
1

Timed Loops for Distributed Storage in Wireless
Networks

Anandarup Mukherjee, Graduate Student Member, IEEE, Pallav Kumar Deb, Graduate Student Member, IEEE,
and Sudip Misra, Senior Member, IEEE

Abstract—IoT deployments that have limited memories lack
sustained computation power and have limited connectivity to the
Internet due to intermittent last-mile connectivity, particularly
in rural and remote locations. For maintaining congestion-free
operations, most of the collected data from these networks are
discarded, instead of being transmitted remotely for further
processing. In this paper, we propose the paradigm Timed
Loop Storage to distribute the data and use the underutilized
bandwidth of local network links for sequentially queuing packets
of computational data that are being operated-on in parts in
one of the IoT nodes, similar to a FIFO. While the sequenced
packets are executed sequentially on the target IoT device, the
remaining packets, which are currently not being operated on,
distribute and keep looping over the network links until they are
required for processing. A time-synchronized packet deflection
mechanism on each node handles data transfer and looping of
individual packets. In our implementation, although we observe
that the proposed approach requires data rates of 6 Mbps, it
incurs only 45 Kb usage of primary storage systems even for
sizeable data, ensuring scalability of the connected IoT devices’
temporary storage capabilities, thereby making it useful for real-
life applications.

Index Terms—Wireless networks, Internet of Things, Resource
Allocation, Connectivity, Distributed Storage Networks

I. INTRODUCTION

Most low-power IoT devices are characterized by highly
constrained computing power and storage capabilities, which
results from an effort to have massively deployable IoT units
with increased lifetime. Presently, memory-intensive compu-
tation and long-term data storage options for such systems are
typically dependent on the use of Cloud and Fog technologies
to overcome the inherent constraints in resources. However,
such solutions have a significant dependence on the availability
and quality of the network, which dictates the frequency
and volume of data or computation to be offloaded by the
constrained IoT devices. Solutions with such dependencies fail
to make inferences and decisions from computations on the
data on loss of last mile connectivity. Methods for performing
computations without effecting regular operations, irrespective
of such network bereaves is necessary.

IoT applications are widely adopted in domains such as
agriculture [1] and environmental monitoring [2]. These IoT
deployments often face challenges and loss of last-mile con-
nectivity in IoT systems is one of the typical ones, particularly

A. Mukherjee, P. K. Deb and S. Misra are with the Department of Computer
Science and Engineering, Indian Institute of Technology Kharagpur, India. e-
mail: anandarupmukherjee@ieee.org, (pallv.deb, sudipm)@iitkgp.ac.in

Figure 1: Motivating scenario: agricultural IoT deployment.

in remote locations and noisy channels. Although the local
ground-level IoT networks, within the purview of a gateway,
may be well connected, the last-mile connectivity from the
gateway to the cellular service provider’s infrastructure is
often constrained [3] or absent (as shown in Fig. 1). In such
cases, transmission of the entire data solely to the gateway
(may be acting as a fog node) for storage and processing
is challenging due to low configurations. In this manuscript,
we take agriculture and environment monitoring system as
an example for motivating our implementation. Interestingly,
the ground-level systems developed for utilizing IoT in such
domains have the following uniform characteristics:

1) Low-intensity data logging. The requirement of low
temporal resolution of sensed agricultural and environ-
mental parameters keeps most of the IoT nodes non-
operational for prolonged periods.

2) Unused bandwidth. Due to long periods of inactivity in
majority of these IoT nodes, most of the local network’s
bandwidth remains unused [4].

3) Temporally unused computation. The prolonged in-
activity of these IoT nodes allows for a significant
availability of collaborative computation powers within
the local network.

4) Renewable energy sources. Due to the high possibility
of deployment in remote areas, with no promise of
manual energy replenishment, almost all agricultural and
environmental monitoring IoT systems are designed to
harvest energy or rely on renewable energy.

WHAT WE PROPOSE. In this work, we introduce the
proposed paradigm of “Timed Loop Storage Networks (TSN)”
as a two-pronged approach: 1) It attempts to perform the
computations on-site in the absence of last mile connectivity
and 2) It loops the data in the network for deflecting data

Pallav
Typewriter

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

among the devices in the network, where deflection is a
commonly used term in Network-on-Chips (NoC) for routing
packets within the chip [5]. We propose the use of optimized
loop time for the data packets in the network until returning
it back to the designated device. We attempt to study the
feasibility of using the massively omnipresent local network
links at the edge of IoT deployments for timed offloading of
data. This paradigm aims to utilize the intra-network links
between IoT devices in a subnet or a local network for locally
offloading temporary computational variables from memory-
constrained IoT devices in the absence of a feasible offloading
path to a more computationally powerful fog or cloud infras-
tructure. TSN is a Time-Division Multiple Access (TDMA)
based scheme – the network links facilitate the TDMA of
computational data, instead of communication packets. We
consider interconnected constrained IoT devices, which 1)
perform mutually exclusive tasks, and 2) operates/computes
on these tasks that use intermediate and independent variables.
Upon satisfying these two conditions, the TSN loops the
unused variables over the network links in a timed manner,
such that the variables return to the source node after a
predefined interval of time (or network-induced delay). The
TSN-based approach frees a constrained IoT device from
storing temporary variables within its already limited memory
by offloading it on the network links for a pre-calculated
duration, after the expiry of which, the variable returns to the
source device and is used-up for computation.

First, we estimate the delays for looping the offloaded vari-
ables on the network by calculating the clock cycles required
for each mathematical operation – addition, subtraction, multi-
plication, and division – on each device type. Before assigning
delays (loop time) to the variables, the system estimates the
number of mathematical operations required from the present
time instant, before which the variable remains unused.

Second, we implement the proposed scheme, where the de-
vices first synchronize their internal clocks using the network
time and then offload their variables onto the network, based
on the estimated delay. Once the system decides the looping
delay for a variable, which we decide using Round-Trip Time
(RTT), from and to the source IoT device, via deflections from
multiple network-connected IoT devices, the system offloads
the variable to the network. The intermediate network devices,
upon receiving the data packets (which are the offloaded
looping variables), check the remaining looping time and
deflect them further to the next device. Looping occurs until
just enough looping time remains, which allows the packet to
return to the source device.

WHAT THIS WORK IS NOT. Owing to the similarity of
some of its operations with various offloading schemes –
whether it is data, task, or computation – our work might
seem similar to offloading in Edge, Fog, or Cloud. However,
the proposed solution is not an offloading scheme of either
conventional nor machine learning-based computational tasks
to the mentioned external platforms; rather, it is a scheme
for sequencing tasks over network links with a variation of

resource allocation, which usually would be done in an indi-
vidual device’s temporary memory. In continuation, our work
dynamically chooses network routes for deflection, unlike
schemes with pre-defined routes. Finally, the proposed solution
is not universally applicable to all IoT domains and application
areas, but is suited for those with low data generation rate.

HIGHLIGHTS. We propose the paradigm of “TSN” for
utilizing unused and available network links at the local edge
layer of IoT deployments to enhance the computational capa-
bilities. Consequently, we propose TSN as a solution for agri-
cultural and environmental monitoring systems as an example
for our implementation, as shown in Fig. 1. We demonstrate
and evaluate the feasibility of the proposed approach towards
the use of intra-network communication links for temporarily
offloading computational variables from a constrained device
until the time it is required back at the offloading device.
Our scheme not only enhances the in-memory data handling
capacity of memory-constrained IoT devices, but also opens up
a new paradigm for enhancement of the processing capabilities
of edge IoT devices, in the absence of a networked path to a
more powerful Fog or Cloud infrastructure. Towards realizing
the proposed mechanism, we outline the major implementation
highlights of our work, as follows:

• We implement and evaluate the proposed TSN protocol,
both as a uni-tiered as well as a two-tiered system to eval-
uate its scope in multi-tier architectures. Implementations
show that TSN does not require any hardware changes
and is suitable for the existing networking infrastructures.

• We make use of a mix of Raspberry Pi micro-computers,
regular computers, and virtual machines hosted on servers
to evaluate the proposed solution.

• We evaluate TSN using mathematical operations of
single-valued variables as well as 2D matrices of varying
sizes (which is roughly synonymous with images and
image-based operations). This evaluation to study the
effect of our proposed paradigm with increasing net-
worked devices shows that it can support simple as well
as complex arithmetic operations.

LIMITATIONS. Although implemented on real-life systems
and evaluated thoroughly, this work is still a proof-of-concept.
Owing to this, the following are the limitations of this work:

1) Lack of dynamicity. The network delays and assign-
ment of looping duration are not dynamic enough to
accommodate the tradeoffs between the network and
device parameters. However, this can be addressed using
optimization schemes such as Game Theory or through
Buffered Bandwidth Centric Networks (BBNets).

2) Processing load at intermediate nodes. Although, orig-
inally aimed for the packets to be restricted within the
bottom three layers of the OSI stack (up to the Network
layer), our present implementation uses all seven layers
of the OSI stack, which uses additional resources.

3) Delays at intermediate nodes. Presently, the movement
of deflected packets is up to the Application layer of the

3

intermediate nodes. This incurs additional delays, which
can be further optimized by limiting the packets up to
the Network layer.

4) WiFi-based network. For the sake of evaluating a
diverse range of network parameters on resource-
constrained IoT devices, the approach is tested using
WiFi. However, the approach is implementable with
any wired or wireless connectivity standard such LoRa,
Zigbee, and others. Note that depending on the commu-
nication technology, the performance of TSN will vary.

II. RELATED WORK

The proposed TSN methodology is analogous to bufferless
networks in Network on Chips (NoCs), particularly bufferless
NoCs. The limited storage capacity on the chips is overcome
by continuous deflection of data packets as it does not use
buffers in its router ports. Limiting our focus on the problem
at hand, we discuss some of the existing approaches and cate-
gorize them into two classes, which are functionally related to
this work – 1) distributed storage and 2) bufferless networks.

Distributed Storage: He et al. [6] proposed a data placement
method by considering the server performance, server space,
and application I/O pattern. They store only the critical data
on the hybrid servers and the others in HDD servers. The
authors in [7] proposed a reinforcement learning-based solu-
tion to reduce data transmission delay by enabling caching
in small base stations. Another popular hardware Solid-State
Drives (SSDs), which are multi-tiered, opens the scope for the
Dynamic Allocation Problem (DAP). Bayat et al. [8] proposed
a method for a scalable coded chaching as the number of
users increases. The authors based their work as a variant of
the Maddah-Ali and Niesen (MAN) scheme. The authors in
[9] proposed a distributed storage system by partitioning the
metadata namespace tree. They achieved this by developing
a history-based strategy and allocating the necessary data to
the servers dynamically. On the other hand, Xu and Tao [10]
proposed a caching method for small base stations without the
prior information about user preference. They used a multi-
agent multi-armed bandit method to achieve this.

Bufferless Networks: Shpiner et al. [11] comprehended the
capacity of bufferless NoCs and proposed scheduling algo-
rithms (DTNS and TNS) to communicate within deadlines of
real-time applications. On similar lines Vishwanath et al. [12]
contemplated a bufferless core optical network and proposed
an edge-to-edge packet-level Forward Error Correction (FEC)
scheme to reduce packet losses. They further analyzed the
performance of FEC in TCP flows. Mavridopoulos et al. [13]
proposed ’HopWindows’ that allocates bandwidths based on
the hop distances. To understand the network links in NoC,
the authors in [14] examined data transmission in bufferless
networks with a focus on critical metrics of network science,
such as deflection times and packet loss rate. They proposed
a deflection mechanism based on delivery queues to cope
with packet forwarding contentions and pointed out how the
network performance varies non-monotonically.

Synthesis: We observe that the current solutions either focus
on 1) strategically distributing the data for storage among the
participating devices in the network, 2) perform optimization
techniques onboard the devices, or 3) introduce new devices
in the network. Such methods add overheads on the device
CPU for performing the optimization routines as well as
the storage peripherals for distributed storage. Further, the
control messages add load on the network, leading to packet
collisions. On the other hand, hardware design-based ap-
proaches towards the creation of new processors, memory, and
storage architectures are expensive and involve modifying the
legacy infrastructures. The proposed TSN approach overcomes
these issues by utilizing the existing network infrastructure
for containing the content necessary for processing on low-
power IoT edge devices. Additionally, we limit the offload
within the local network and subnet only, which enhances the
utility of these otherwise constrained devices and removes the
congestions on a general network. In summary, the proposed
work is an attempt to reduce the dependency on hardware
peripherals by exploiting the features of the network links, as
opposed to the solutions available in the literature.

Figure 2: Implementation of the uni-tier TSN architecture.

III. IMPLEMENTATION DESIGN

In this Section, we describe our problem scenario and discuss
the various modalities of our work towards utilizing the local
network links between IoT devices at the edge for temporarily
storing/looping large data variables. These variables arise
and are used at various levels of a computational task in
IoT devices, a majority of which follow a sequential oper-
ation execution pattern. We use Raspberry Pi micro-controller
boards for assuming the roles pertaining to the TSN protocol.
Additionally, we present evaluations of TSN as both one
and two-tier architectures. Fig. 2 depicts a snapshot of our
implementation of TSN as a uni-tier architecture. The devices
are wirelessly connected to one another over which the data
loops until a calculated loop time (Tloop) exhausts. It may be
noted that the devices are placed close to one another for better
representation and are actually randomly placed far apart from
one another during implementations. At this point, we define
two interrelated terms for discerning the proposed work:

• Looping: It refers to the condition when the data packets
are in the network, either in transmission through the
links or are being deflected.

4

• Deflection: It refers to the phenomenon when the data
packet is deviated towards another device in the network,
which is the basis of looping in TSN.

PRIMARY CONSIDERATIONS. We consider a network of
resource-constrained IoT devices that are tasked with periodic
operations involving basic mathematical operations. These
operations – addition, subtraction, multiplication, and division
– consist of single-valued variables as well as 2D matrices
of varying sizes. We assume that in order to accommodate
operations on large entities (matrices, images, and others)
locally, the participating devices have a higher tolerance for
delays, and have networked neighbors, upon whose links it can
offload its data temporarily. Additionally, we represent Wdev

as the time required by a device to perform arithmetic oper-
ations (either single-variable or matrices). In case of single-
valued variables, Wdev is considered equal to the execution
time (Tex). According to the proposed protocol TSN, the
variables/data to be offloaded to the network for timed looping
have to consider the following – 1) the clock cycle required
for each operation on the device, 2) the estimated number
of clock cycles that passes before the variable is required for
continuation of the operation, 3) available network bandwidth,
4) available network links at the source device, 5) Round Trip
Time (RTT) for each link towards routing a packet from the
source device, 6) synchronicity between the other participating
networked devices, and 7) offload data size.

IV. TSN: THE TIMED LOOP STORAGE FOR WIRELESS
NETWORKS

The implementation of single-valued variable-based operations
in TSN are quite straight forward. However, it gets compli-
cated in case of large matrices as it is not possible to send
a sizeable matrix in a single TCP packet over the network
links (as per our implementation). To mitigate this problem,
we split the matrix column-wise before injecting them onto the
network links. Upon completion of looping, the source device
receives these individual columns and performs operations on
the matrix stored locally.

To determine the duration for which a packet needs to ro-
tate/loop in the network, we base our formulations on standard
Queueing Theory models. For any variable or matrix, the IoT
device injects packets into the network based on its availability
– the device sends only a specific number of packets over a
duration of time. Since a specific number of events occurs over
a given time, we consider a Poisson Distribution to represent
the arrival rate on our devices. Along similar lines, we consider
that the service rates also follow the same distribution. We
further assume that the devices can simultaneously perform
computation as well as networking services (which we also
refer to as deflection). As the IoT devices on TSN are resource-
constrained and dedicated for computing tasks, we consider the
presence of a single processor core. Accordingly, we model
our work as a M/M/1 queue.

The precise nature of the offloading, looping and return of
the data to the source node mandates that the participating

Figure 3: Packet format in TSN for both single (above) and
matrix (below) variables.

devices in our TSN paradigm be time-synchronized. In our
implementation, we use Precision Time Protocol (PTP) [15]
to achieve this. Although PTP is a centralized solution, where
slave nodes reflect the master node’s time, we plan to keep the
provision for any device to act as a master upon the unanimous
decision of the participating devices in case the previous one
ceases to operate. Since the master can be anyone in case
of failure, TSN eventually has the capability to synchronize
the clock times in a decentralized manner. The selection of a
master PTP node is beyond the scope of our present work.

We design the payload part of the packets to support the
inclusion of data in our format, and the associated modalities
required for making TSN work over a network (refer Fig.
3). As our implementation language is Python, we fashion
the payload as a Python dictionary; however, formats such
as JSON will also suffice for this purpose. Each packet for
TSN contains the originating source address (Asrc), so that
the packet can be sent back upon completion of the looping
duration, the loop time (Tloop), which dictates the duration for
which the packet needs to stay in the network, and the variable
data. We show the calculation of (Tloop) later in this Section.
In case of matrices, we add an extra parameter into the packet,
which represents the column number of the fragmented matrix.
We plan to remove the column number in the future.

Algorithm 1 Ping Test

INPUTS:
• Devices in TSN.

OUTPUT: DRTTmin : Device with minimum packet transmis-
sion time.

1: while True: do
2: for Devices in TSN do
3: Perform ping test.
4: Calculate minimum RTT.
5: end for
6: DRTTmin = Device with minimum RTT.
7: Wait for 5seconds.
8: end while

Based on the factors mentioned above, the devices in TSN
have two modes of operation – either as a Source node/device,
or as a Intermediate device. Both of these modes transfer their
data to the next device by selecting the one with minimal
network RTT, the details of which are outlined in Algorithm 1.
As a consequence of these criteria, more data are pushed into
links with higher usable bandwidth in comparison to the ones
with lower bandwidths. The offloading device checks the RTT

5

and the available bandwidth for each of its available network
links after every 5 second. This update time is selected to
avoid unnecessary delays due to the checking of these network
parameters. This network parameter update time is tunable as
per requirement. Network links with higher usable bandwidths
get injected with more data, while those with lower bandwidth
transfer fewer data during the same period.

Source Node: We define a device as a source when it offloads
its variables onto the network. The device sets the loop time
Tloop for its variables in this mode. As the devices in TSN
are time-synchronized, Tloop is the sum of the current system
time of the device Tclk, Wdev , and Wmax

net , where Wmax
net is the

maximum time needed to communicate with any of the devices
in the network. Wmax

net is incorporated to add tolerance to a
packet’s arrival delay. This is mathematically represented as,

Tloop = Tclk +Wdev +Wmax
net (1)

We inject data onto the network using Algorithm 2. In case
of matrices, we use a variation of Wdev , (refer Section VI).

Algorithm 2 Data Looper

INPUTS:
• DRTTmin from Algorithm 1.
• Single-valued variable/Matrix M for looping.

OUTPUT: Inject Payload into the network.
1: for Jobs in device do
2: Payload: New dictionary.
3: Payload[‘Address’] = Aself
4: if Single Variable then
5: Payload[‘LoopTime’] = Random(3,5).
6: Payload[‘Data’] = Variable value.
7: Send Payload to DRTTmin .
8: else if matrix M then
9: for Columns in matrix M do

10: Set Payload[‘LoopTime’] using equation (1).
11: Payload[‘Data’] = M [Column].
12: Payload[‘ColumnNumber’] = Column Number.
13: Send Payload to DRTTmin .
14: end for
15: else
16: Do Nothing.
17: end if
18: end for

Intermediate Node: A device participating in the TSN acts as
an intermediate node/device, when it does not offload its data
onto the network. In this mode, the devices receive packets
over network links and compare Tloop and Tclk, which helps
the device to decide on the future course of action based on
predefined conditions. If Tloop +Wmin

net > Tclk, the packet is
deflected to a device with Wmin

net (minimal one-way delay).
If Tloop +Wmin

net < Tclk, the packet is directed towards the
originating source via the most direct path available. Finally,
in case Tloop = Tclk, and the source matches the device itself
(Asrc = Aself), the device starts performing its allocated

operation. The threshold conditions for network actions are:

Action =


Deflect, if Tloop +Wmin

net > Tclk
Send to source, if Tloop +Wmin

net ≤ Tclk
Execute, if Tloop ≤ Tclk and

Asrc = Aself
(2)

We enable the intermediate devices to deflect the packets using
Algorithm 3. On exhaustion of the loop time, the packet is
returned to the source device where the intended operation
with the variable data is resumed (Algorithm 4).

Algorithm 3 Deflector

INPUTS:
• DRTTmin from Algorithm 1.
• TRTTmin : Time to transmit packet to DRTTmin

• Single-valued variables/Matrix Columns from devices.
OUTPUT: Forward packet to suitable device.

1: for Payload packets received do
2: if ActualTime + TRTTmin ≥ Payload[‘LoopTime’] then
3: Send Payload to Asrc
4: else if ActualTime + TRTTmin < Payload[‘LoopTime’]

then
5: Send Payload to DRTTmin .
6: else if ActualTime + TRTTmin ≥ Payload[‘LoopTime’]

AND Payload[‘Address’] = Aself then
7: Execute Algorithm 4.
8: else
9: Do Nothing.

10: end if
11: end for

To demonstrate the feasibility of TSN, we design the following
three experiments to analyze the behavior of the devices when
subjected to each. Firstly, we loop single-valued variables into
the network to establish the workability and feasibility of TSN.
Secondly, we loop square matrices and analyze the delays, as
well as network and memory usage. Finally, we extend TSN
into a two-tiered architecture to observe its scope in multi-
tier architectures like Cloud/Fog computing. Sections IV-A -
V outline the experimental details.

Figure 4: TSN as a uni-tier system where devices act as
source as well as intermediates. The variable loops among
these devices until exhaustion of the loop time.

A. Single-Valued Variables

We perform this experiment to establish the feasibility of TSN.
In this scenario, we consider basic mathematical operations

6

such as addition, subtraction, multiplication, and division be-
tween two single-valued variables. We initiate this experiment
by storing one variable within the device and looping the other.
The source node sets its address and puts in a single value
(floating point values) as payload in the packets. The packet
then loops within the network as the devices keep deflecting
it as shown in Fig. 4. The packet returns to the source device
upon completion of its assigned loop time. The source device
incorporates the received variable into an operation.

Algorithm 4 Operator

INPUTS:
• Payload[‘Data’]: Single-valued variables/Matrix
Columns from devices.
• Matrix X[dim][dim] of dimension dim within device.
• Column matrix M [dim][1] from Algorithm 3.

OUTPUT: Result matrix R.
1: while True do
2: if Payload[‘Data’] is single-valued variable then
3: Perform arithmetic operation.
4: else if Payload[‘Data’] is matrix column then
5: M [dim][1] = Payload[‘Data’]
6: Rcolmat = X[dim][dim]×M [dim][1].
7: Update R[Payload[‘ColumnNumber’]] with
Rcolmat.

8: else
9: Do Nothing.

10: end if
11: end while
12: Display R

B. Matrices as Variables

For the sake of demonstration, we perform only matrix mul-
tiplications in this experiment. Similar to the single-valued
variables, we store one matrix within the device and loop the
other in the network. As it is not possible to fit a sizeable
matrix into a single packet, we fragment it column-wise for
looping over the network. We discuss the computation of
looping time for these columns in subsequent sections. Upon
receiving the columns back after the expiry of the designated
loop time, the device multiplies it with the matrix contained
within to generate the corresponding result column. The device
stores this result column to finally create the complete result
and displays the resulting matrix.

V. TSN AS A TWO-TIER ARCHITECTURE

In this experiment, we split the devices into two tiers. We
dedicate devices on the first tier to only inject their packets into
the second tier. The devices on the second tier are responsible
for deflecting/looping the packets within the network. Fig. 5
shows the devices on the second tier returning the packets to
the devices on the first tier upon exhaustion of the looping
time in the packet. The principle of TSN for multiplying the
matrices remains the same, as described in Section IV-B. We

Figure 5: TSN as a two-tier system where devices on Tier-1
act as sources while devices on Tier-2 act as intermediates.
The data sent from Tier-1 loops in Tier-2 for the duration of
the assigned the loop time. At the end of the loop time, the
intermediate node returns the data back to the source in Tier-1.

use the terms, variables and fragments, for the matrix columns
interchangeably. The duration for which the variable packets
need to loop over the network is dependent on two factors –
1) device processor, and 2) network state.

Device Processor: Let λ be the mean arrival rate of the
variables in a device, and µ the mean service rate. We compute
the probability of the device processor to be busy due to an
operation as ρ = λ/µ. The waiting time for a variable in
the device is represented as Wdev = Wq +

1
µ , where Wq is

the mean waiting time in the device’s queue, and is given by
Wq = Lq/λ. Here, Lq is the number of variables that have
already looped and are in the device awaiting a response from
the processor, which is computed as Lq = ρ2/(1− ρ2).
Network State: Typically, the delays due to networks consist
of three basic factors – Transmission (Ttrans), Propagation
(Tprop), and Processing Delays (Tpros). Consequently, we
calculate the delay in the network as sum of all three, i.e.,
Wnet = Ttrans + Tprop + Tpros. We compute each of the
parameters as – Ttrans = N/Brate, where (N) is the number
of transmission bits and (Brate) is the available rate of
transmission; Tprop = D/v, where D is the distance between
the source and destination and v is the speed of packet
propagation in the medium; and (Tpros) is the time needed to
unpack the packet and read the headers, which is dependent on
the device’s processor speed. However, in our implementation,
we do not directly consider Wnet as the looping time, as the
round trip time (RTT) represents the end-to-end delay between
the source and destination, and back for 56 Bytes of data in
a standard Network Ping test. Further, the one-way network
delay is given as Wnet = RTT/2, and the transmission rate is
calculated as Brate = 56/Wnet. We keep track of the indices
sent out along a particular link as I = Brate×Tdur

Psize×Nchunk
, where

Tdur is the duration of pushing packets into the particular
link, Psize is the size of each packet, and Nchunk represents
the number of chunks sent.

VI. PERFORMANCE EVALUATION

In our work, we primarily focus on the evaluation of the
processing-intensive matrix multiplication task. As matrix

7

(a) Delay: 3 Device (b) Delay: 4 Device (c) Delay: 5 Device (d) Delay: 6 Device

(e) Upload Rate: 3 Device (f) Upload Rate: 4 Device (g) Upload Rate: 5 Device (h) Upload Rate: 6 Device

(i) Download Rate: 3 Device (j) Download Rate: 4 Device (k) Download Rate: 5 Device (l) Download Rate: 6 Device

(m) Memory: 3 Device (n) Memory: 4 Device (o) Memory: 5 Device (p) Memory: 6 Device

(q) RAM: 3 Device (r) RAM: 4 Device (s) RAM: 5 Device (t) RAM: 6 Device

Figure 6: Comparison of parameters observed in case of single-valued variables in TSN.

Figure 7: Delay in case of M50 and M100 matrices.

multiplication operation involves the generation of large in-
termediate values, which are held in the device memory till

the operation finishes, we store one matrix within the device
and fragment the other into columns, which loop in the
network. We use matrices of three sizes, 50× 50, 100× 100,
and 250 × 250, and refer to them as M50,M100 and M250,
respectively. The loop time for these columns is determined
according to Equation(1) with a minor modification to Wdev ,
as upon receiving the columns, the devices need to perform
the multiplication of the matrix stored in it with the former
and generate a result column. Thus, Wdev = Tex × Cnum,
where Tex is the time needed to generate one result column
and Cnum is the column number. These result columns are
then combined to form the final matrix. In our experiments,
we use regular computers and laptops as deflector units and
Raspberry Pi as a source unit. We show the results from the
experiments mentioned in Section IV and analyze them in

8

(a) Upload Rate for M50 ma-
trix

(b) Upload Rate for M100 ma-
trix

(c) Download Rate for M50

matrix
(d) Download Rate for M100

matrix

(e) Memory for M50 matrix (f) Memory for M100 matrix (g) RAM for M50 matrix (h) RAM for M100 matrix

Figure 8: Comparison of parameters in case of M50 and M100 matrices in TSN.

detail. In the two-tiered system, we assign 6 deflectors in Tier-
2, while increasing source devices from 3 to 6 in Tier-1.

A. Delay

Figs. 6a – 6d show the observed delays, averaged over 30
iterations, where each device performs any one of the basic
mathematical operations for single-valued variables. We in-
crease the number of devices and observe the behavior of the
delays in Figs. 6a – 6d. We observe that the delay reduces
as the number of devices in TSN increases. However, in
Fig. 6c, we see a significant increase in delay in Devices
2 and 4. We attribute this to the intermittent congestion in
the device’s buffer due to which the returning variable gets
queued before the operation. Another reason for this behavior
is the need for faster context switching. Since we make use
of the same processor core for performing computations as
well as networking, this delay is expected. However, the delay
is more concentrated towards the lower-end and lies in the
range of milliseconds. Similarly, Fig. 7 depicts the delays
observed in case of looping the M50 and M100 matrices. We
run the experiment on matrices averaged over 10 iterations
and observe that TSN performs much faster in case of the
larger matrix as the larger matrix has more time to loop than
in case of the smaller matrix. However, we observe delays of
more than 100 seconds in both cases, which is not desirable in
real-time application scenarios. However, the delays are more
concentrated at 10 seconds. The additional lag is due to the
lack of a faster context switching method between the two
modes in Section IV, thereby resulting in undesirable delays.

Figs. 9a – 9d show the delay in the case of the two-tiered archi-
tecture, for which we gradually increase the number of devices
in Tier-1, whereas Tier-2 has 6 devices acting as deflectors. We
observe a similar spread of delays in Fig. 7. We attribute such
delays to the change in architecture and device configurations.
The lag in accessing two different networks also plays an

important part in increasing the delay. Adjustments to the loop
time are likely to improve the results. However, as we increase
the dimension of the matrix from M100 to M250, we observe an
improvement in the delay spread. As mentioned earlier, larger
matrices get more time to loop in the network, which leads to
better synchronization. We comment that TSN is feasible for
non-real-time IoT applications and performs better as the size
of the payload increases.

B. Upload Rate

Figs. 6e – 6h show the upload rate as the number of de-
vices increases for single-valued variable operations. Since
the number of data packets to be pushed to the network
remains constant, the upload rate remains almost similar in
all of the cases (< 6Mbps). We only observe an increase in
network utilization, which is the objective behind proposing
TSN. Extending this to our matrix scenario, to get an in-depth
understanding of the behavior of the devices, we show the
records of a single iteration in Figs. 8a and 8b, while looping
M50 and M100 matrices, respectively. We observe that in the
case of the M50 matrix, the device sends data in a bursty
manner. Some of the columns are sent in the initial 40 seconds,
and then some of them again at around 100 seconds. On
the other hand, all of the columns are sent together in case
of M100. How the devices offload their data to the network
significantly depends on the availability of the network. Due
to the increase in data content, we observe an increase in the
overall upload rate for M100, as compared to M50.

Figs. 9e – 9h show the upload rates through all of the iterations
on applying TSN as a two-tier system for a M250 matrix.
Due to the increase in the size of the matrix, the overall rate
increases from 6Mbps to 16Mbps. As the number of devices
in Tier-1 increases from 3 to 6, the upload activity in the
six Tier-2 devices increases, which signifies improved network
utilization and scalability.

9

(a) Delay: 3 Device (b) Delay: 4 Device (c) Delay: 5 Device (d) Delay: 6 Device

(e) Upload Rate: 3 Device (f) Upload Rate: 4 Device (g) Upload Rate: 5 Device (h) Upload Rate: 6 Device

(i) Download Rate: 3 Device (j) Download Rate: 4 Device (k) Download Rate: 5 Device (l) Download Rate: 6 Device

(m) Memory: 3 Device (n) Memory: 4 Device (o) Memory: 5 Device (p) Memory: 6 Device

(q) RAM: 3 Device (r) RAM: 4 Device (s) RAM: 5 Device (t) RAM: 6 Device

Figure 9: Comparison of parameters observed in case of M100 and M250 matrices in TSN.

C. Download Rate

Figs. 6i – 6l show the download rate for each of the devices
in a single-valued variable operation. We observe that, as the
number of devices increases, the download rate does not vary
much, even though the content of data pushed into the network
increases. The pattern of the upload and download rates are
similar as, when one device uploads, a corresponding device
accepts the packets. A pattern similar to the upload rate is
observed for the download rate for M50 and M100 matrices,
as shown in Fig. 8c and Fig. 8d, respectively. Since the devices
offloaded their data in a bursty manner (refer to Fig 8a), the
download rate is also bursty (refer to Fig. 8c). On the other
hand, the data rate in case of M100 reflects the same behavior
as that in Fig. 8b. Additionally, due to the increase in data

size, we observe a rise in the download rate from 6Mbps in
case of M50 to 8Mbps in case of M100.

The download rates in case of TSN as a two-tier system
while looping a M250 are shown in Figs. 9i – 9l. As the
Tier-1 network gets denser due to the increase in devices, we
observe that a deflector in Tier-2 with dominating download
rate has a dominating upload rate also (Figs. 9e – 9h),
owing to the increased availability of usable bandwidth. TSN
significantly increases network utilization, as the size of the
matrix increases, which, in-turn, indicates good scalability.

10

D. Virtual Memory

Figs. 6m – 6p show the virtual memory/ secondary memory
utilization for each of the TSN devices during a single-valued
variable operation. As single-valued operations consume neg-
ligible memory, we estimate that the trend of virtual memory
usage is similar throughout all the figures, and we attribute
this behavior to the functional code space only. Along similar
lines, for operations involving M50 and M100 matrices, we
observe the same memory consumption in both Figs. 8e and
8f. However, they are larger than those in Figs. 6m – 6p by
100KB. We do not observe additional changes in case of
M50 and M100 matrices. We attribute this increase of virtual
memory usage to the increase in lines of code, as well as the
size of the data within the device.

In the case of TSN as a two-tiered system, we separate the
two modes and place the code for looping on devices in one
layer and put the other set of code (computation) on devices
on the other layer. Due to this reason, we see reduced memory
consumption as compared to other configurations of TSN.
Also, since we run the same program throughout, we observe
the same memory consumption in Figs. 9m – 9p. We infer
that virtual memory consumption in TSN is mostly dependent
on the executing code and optimized routines will consume
much less memory, resulting in savings.

E. Primary Memory

Figs. 6q – 6s show the primary memory usage for each of
the devices during a single-valued variable operation. At the
inception, the primary memory usage by TSN is low. As
the exchange of data proceeds, we observe a steady rise in
the usage of primary memory, which eventually stabilizes
after a little over 30 seconds. We again observe that, with
an increasing number of devices, the consumption of primary
memory remains the same throughout. The sizes of the matri-
ces M50 and M100 are significantly larger than single-valued
variables. Irrespective of the size of data to be transferred
and computation size, we observe the same consumption of
primary memory in Figs. 6q – 6s, 8g, and 8h.

Again, in Figs. 9q – 9t, the consumption of primary memory
in the two-tier system using M250 matrices remains the
same as that in case of M50 and M100 matrices and single-
valued variables. We infer that TSN mitigates the need for
excessive primary memory for performing operations, even on
higher dimension matrices, and handling larger data, even on
constrained devices (which is the main objective of TSN).

In summary, we observe that a gradual increase in data size,
results in increased utilization of the network. However, we
do not observe any increase in the secondary as well as
primary memory consumption, signifying that, TSN is not only
feasible, but is also scalable and conserves memory.

F. Energy Consumption

In comparison to existing works, the proposed TSN mandates
looping the data in the network, leading to additional energy

Table I: Communication overheads of the TSN system.

No. of
devices

CPU
usage

RAM
usage

Upload
rate (Mbps)

Download
rate (Mbps)

1 3.09% 5.41% 0.01 0.51
2 7.61% 5.34% 0.51 0.97
3 12.63% 5.39% 1.02 1.50
4 14.58% 5.41% 1.46 1.91
5 19.52% 5.37% 1.93 2.40

consumption due to repeated transmissions. We account for
this condition and present the additional energy consumptions
in Fig. 10, which we calculate for the M250 matrix by
considering that each device requires 20 nJ for transferring 1
byte. We gradually increase the number of devices and observe
a stable energy consumption along with a subtle decreasing
trend. For instance, we observe the maximum consumption
(30 µJ) in the case of 2 devices (Fig. 10a). On average,
each device consumes 20 µJ , irrespective of the number of
participating devices. We observe that in each experiment,
one or two devices have higher consumptions than the others
(device 2 in Fig. 10c and devices 3 and 4 in Fig. 10d).
Intuitively, this is because the devices keep track of the free
channels as a background process and typically forwards the
packets towards these devices. Since all communications occur
simultaneously, one or two devices in the network has to
manage multiple packets, which is yet lower than the energy
consumption in Fig. 10a. In summary, we infer that although
all devices offload their own data for looping, the increasing
number of participating devices helps in stabilizing the energy
consumption on each and in reducing the average value.

G. Scalability

To demonstrate scalability, we connect the devices to the
general Internet through a WiFi router and use a matrix of
size 3840 × 2160 among all the devices, and present our
observations with respect to an arbitrarily chosen Raspberry
pi device in Table I. Since we do not make any changes to
the working methodologies of the layers in the OSI reference
model, we rely on them and the TCP protocol for smooth
and reliable data transfers through implicit segmentation and
fragmentation routines. As the number of devices increases,
the number of TSN processes running on the network also
increases, which leads to an increase in the number of data
packets. In the case of connecting the devices through the
general Internet, we observe a maximum download rate of 2.5
Mbps, as opposed to 16 Mbps in the private network (refer
Fig. 9). The upload rate also shows a similar trend. However,
irrespective of the network constraints, the data transfer, and
the necessary task execution occurs reliably and successfully
in all cases. Interestingly, the RAM usage does not vary in
any case., which is the main objective of TSN. On average,
we consistently observe the usage of only 5.4%. The CPU
usage on the other hand shows a rising trend. This is because
of the increasing number of iterative execution of the packet
reading and deflecting routines. Although optimizing hardware
usage is beyond the scope of this work, some of the possible
solutions for overcoming such constraints may be 1) increasing

11

(a) Energy: 2 Devices (b) Energy: 3 Devices (c) Energy: 4 Devices (d) Energy: 5 Devices

Figure 10: Energy consumption in the devices participating in the TSN (apart from master).

Table II: Comparison of TSN with existing solutions in terms
of ability of storing in network (SN), distributed processing
(DP), redundancy of packets, necessary data rate (DR), and
processing delay (PD).

Category SN DP Redun-
dancy DR PD

SDN
storage [16] 3 7 3 > TSN None

Federated
learning [17] 7 3 7 523 Kbps 4.32 s

TSN
(proposed) 3 3 7 16 Mbps 3000 s

the configuration of the devices (opposed to the proposed
work) or 2) devise mechanisms for not deflecting the packets
towards the devices who’s hardware consumption is beyond
a certain threshold. Further, on adding new devices to the
network, the number of links also increases, which increases
the scope for TSN. In summary, the size of the matrices
does not affect performance, and Table I demonstrates the
scalability in terms of RAM and network rates.

H. TSN in Comparison to Existing Solutions

We present a comparison of TSN with existing solutions in
literature in Table II. Wang et al. [16] proposed a similar
looping technique in SDN for storing in the network links.
However, it requires looping of duplicate packets, resulting in
redundancy, which increases the required data rate (compared
to TSN). Moreover, it does not support data processing on the
SDN switches. We also compared our work with a federated
learning approach in [17] using MNIST dataset. While it
supports distributed processing, it does not offer storage in the
network. Due to the data splitting, it requires 4.32 s to train the
local model on a Raspberry Pi device. It requires a data rate
of 523 Kbps as it transfers only necessary meta data. On the
contrary, since TSN stores data on the network by looping, it
requires 16 Mbps data rate with a training time of almost 3000
s (approximately 1 hour). Such increase in delays is due to
the delays in networking activities and its proceedings, which
necessitates the need for optimized solutions, which we plan
to address in our extended work.

VII. DISCUSSION

For implementing TSN, we recommend that it is best suitable
for scenarios that satisfy the following conditions:

• C1: Non real-time applications or those that has sufficient
tolerable thresholds. We observe the same in Figs. 6a-6d,
7, and 9a-9d.

• C2: In Figs. 6, 8 and 9, we observe data rates of almost 6
Mbps, which suggests the need for reliable communica-
tion links. Failure to comply with the network condition,
the devices will start queueing data in its buffer, which
is in contradiction of TSN’s motive.

• C3: In continuation to C1, since we consider delay toler-
ant applications, devices with some processing capacity
(1.1 GHz) will suffice. The observations confirm the
independence of TSN from memory peripherals.

In summary, TSN is suitable for applications that do not
mandate real-time results. While TSN does not impose any
constraint on the device configurations, the network links
should be of good quality. The performance will vary pro-
portionately with the communication technology.

VIII. CONCLUSION

In this work, we propose the paradigm of Timed Loop Storage
Networks (TSN), and implement and analyze the feasibility of
using network links as temporary storage entities. We intro-
duce two configurations of the TSN – single tiered, and two-
tiered – on which we evaluate the performance of processing-
intensive tasks such as matrix multiplication using M50, M100,
and M250 matrices. Our real-life implementation results show
that TSN successfully executes the intended operations on the
devices and the network, accommodates mathematical oper-
ations involving more extensive variables without incurring
significant overheads to primary and secondary memories of
the devices, and facilitates scalability of deployment. The
increased delays due to network-based operations and context
switching on the devices is a significant tradeoff of this
approach. These delays can be further reduced by adjusting
the loop times and improving the latencies, to make TSN
feasible for real-time applications. Currently, the use of TSN
is plausible for local networks and for environments that have
low data generation rates, which is the primary objective of
this work. This work does not raise any ethical issues.

In the future, we plan to address the prolonged latencies
observed in Section VI by adopting methods similar to
BBNets. Machine learning-based methods for detecting the
quality of the network and then deflecting the data packets
may reduce the latencies and optimize resource usage as
random traffic effects the wireless networks [18]. With the

12

reduction in latencies, TSN may find applications in real-time
environments. Further, we also plan to restrict our packets and
its payload within the bottom three layers of the OSI stack.
Such a reduction in packet processing delays will thereby
reduce the overall operational delay. Summarizing, we plan
to bring the proposed storage over the network to real-time
environments, as a contingency for network loss in IoT.

REFERENCES

[1] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A survey on
the role of IoT in agriculture for the implementation of smart farming,”
IEEE Access, vol. 7, pp. 156 237–156 271, Oct. 2019.

[2] X. Geng, Q. Zhang, Q. Wei, T. Zhang, Y. Cai, Y. Liang, and X. Sun, “A
mobile greenhouse environment monitoring system based on the Internet
of Things,” IEEE Access, vol. 7, pp. 135 832–135 844, Sep. 2019.

[3] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Transactions on Wireless Communications,
vol. 19, no. 3, pp. 2022–2035, Jan. 2020.

[4] B. Feng, C. Zhang, J. Liu, and Y. Fang, “Turning waste into wealth:
Free control message transmissions in indoor WiFi networks,” IEEE
Transactions on Mobile Computing, pp. 1–1, Jun. 2019.

[5] X. Xiang, P. Sigdel, and N.-F. Tzeng, “Bufferless network-on-chips
with bridged multiple subnetworks for deflection reduction and energy
savings,” IEEE Transactions on Computers, vol. 69, no. 4, pp. 577–590,
2020.

[6] S. He, Z. Li, J. Zhou, Y. Yin, X. Xu, Y. Chen, and X. Sun, “A
holistic heterogeneity-aware data placement scheme for hybrid parallel
I/O systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 4, pp. 830–842, Apr. 2020.

[7] X. Xu, M. Tao, and C. Shen, “Collaborative multi-agent multi-armed
bandit learning for small-cell caching,” IEEE Transactions on Wireless
Communications, vol. 19, no. 4, pp. 2570–2585, Apr. 2020.

[8] M. Bayat, R. K. Mungara, and G. Caire, “Achieving spatial scalability
for coded caching via coded multipoint multicasting,” IEEE Transactions
on Wireless Communications, vol. 18, no. 1, pp. 227–240, Jan. 2019.

[9] Y. Gao, X. Gao, X. Yang, J. Liu, and G. Chen, “An efficient ring-based
metadata management policy for large-scale distributed file systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 9,
pp. 1962–1974, Feb. 2019.

[10] X. Xu and M. Tao, “Decentralized multi-agent multi-armed bandit
learning with calibration for multi-cell caching,” IEEE Transactions on
Communications, vol. 69, no. 4, pp. 2457–2472, 2021.

[11] A. Shpiner, E. Kantor, P. Li, I. Cidon, and I. Keslassy, “On the capacity
of bufferless networks-on-chip,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 2, pp. 492–506, Feb. 2015.

[12] A. Vishwanath, V. Sivaraman, M. Thottan, and C. Dovrolis, “Enabling
a bufferless core optical network using edge-to-edge packet-level FEC,”
IEEE Transactions on Communications, vol. 61, no. 2, pp. 690–699,
Feb. 2013.

[13] S. B. Mavridopoulos, G. Beletsioti, P. Nicopolitidis, G. I. Papadimitriou,
and E. Varvarigos, “Hop distancebased bandwidth allocation technique
for elastic optical networks,” International Journal of Communication
Systems, vol. 33, no. 8, p. e4360, Feb. 2020.

[14] C. Pu, W. Cui, J. Wu, and J. Yang, “Bufferless transmission in complex
networks,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 7, pp. 893–897, Jul. 2018.

[15] J. Kannisto, T. Vanhatupa, M. Hännikäinen, and T. D. Hämäläinen,
“Precision time protocol prototype on wireless LAN,” in Proceedings
of Telecommunications and Networking - ICT, J. N. de Souza, P. Dini,
and P. Lorenz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
Aug. 2004, pp. 1236–1245.

[16] M. Wang, P. Chi, J. Guo, and C. Lei, “SDN storage: A stream-
based storage system over software-defined networks,” in Proceedings of
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Apr. 2016, pp. 598–599.

[17] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A. Camtep,
H. Kim, and S. Nepal, “End-to-end evaluation of federated learning and
split learning for internet of things,” in Proceedings of International
Symposium on Reliable Distributed Systems (SRDS), Sep. 2020, pp. 91–
100.

[18] P. Panagoulias, I. Moscholios, P. Sarigiannidis, M. Piechowiak, and
M. Logothetis, “Performance metrics in OFDM wireless networks
supporting quasi-random traffic,” Bulletin of the Polish Academy of
Sciences: Technical Sciences, vol. 68, no. No. 2 April (Special Section
on Computational Intelligence in Communications), pp. 215–223, Apr.
2020.

Anandarup Mukherjee is currently a Senior Re-
search Fellow and Ph.D. Scholar in Engineering at
the Department of Computer Science and Engineer-
ing at Indian Institute of Technology, Kharagpur. He
finished his M.Tech and B.Tech from West Bengal
University of Technology in the years 2012 and
2010, respectively. His research interests include,
but are not limited to, networked robots, unmanned
aerial vehicle swarms, Internet of Things, Industry
4.0, 6G and THz Networks, and enabling deep
learning for these platforms for controls and com-

munications. His detailed profile can be accessed at http://www.anandarup.in

Pallav Kr. Deb is a Ph.D. Research Scholar in
the Department of Computer Science and Engi-
neering, Indian Institute of Technology Kharagpur,
India. He received his M.Tech degree in Information
Technology from Tezpur University, India in 2017.
Prior to that, he has completed the B. Tech degree
in Computer Science from the Gauhati University,
India in 2014. The current research interests of Mr.
Deb include UAV swarms, THz Communications,
Internet of Things, Cloud Computing, Fog Com-
puting, and Wireless Body Area Networks. Further

details are available in https://pallvdeb.github.io/

Dr. Sudip Misra (M09SM11) is a Professor with
the Department of Computer Science and Engi-
neering, Indian Institute of Technology, Kharagpur.
He received his Ph.D. degree in Computer Science
from Carleton University, in Ottawa, Canada, and
the masters and bachelor’s degrees, respectively,
from the University of New Brunswick, Fredericton,
Canada, and the Indian Institute of Technology,
Kharagpur, India. Dr. Misra is the Associate Editor
of the IEEE Transactions Mobile Computing and
IEEE Systems Journal, IEEE Transactions on Sus-

tainable Computing, IEEE Network, and Editor of the IEEE Transactions on
Vehicular Computing. His current research interests include algorithm design
for emerging communication networks and Internet of Things. Further details
about him are available at http://cse.iitkgp.ac.in/ smisra/.

	Introduction
	Related Work
	Implementation Design
	TSN: The Timed Loop Storage for Wireless Networks
	Single-Valued Variables
	Matrices as Variables

	TSN as a Two-Tier Architecture
	Performance Evaluation
	Delay
	Upload Rate
	Download Rate
	Virtual Memory
	Primary Memory
	Energy Consumption
	redScalability
	TSN in Comparison to Existing Solutions

	Discussion
	Conclusion
	References
	Biographies
	Anandarup Mukherjee
	Pallav Kr. Deb
	Dr. Sudip Misra

