
1

Tremors: Privacy-breaching Inference of Computing
Tasks using Vibration-based Condition Monitors

Anandarup Mukherjee, Graduate Student Member, IEEE, Pallav Kumar Deb, Graduate Student Member, IEEE,
and Sudip Misra, Senior Member, IEEE

Abstract—We propose the adaptation of vibration-based con-
dition monitoring systems and techniques, popularly used in
industrial condition-based maintenance, for identifying the pos-
sibility of compromising the privacy of personal computing
systems. This work exploits the automated fan-based heat dissi-
pation features and read/write operations of disk-based storage,
commonly present in personal computers, to read computing
task-specific vibration signatures on the computer’s cabinet/case.
These vibration signatures are then used to identify the broad
classes of tasks being executed on a separate computer without
ever needing to log into the monitored machine. This work
builds upon the premise that heterogeneous tasks have distinct
computing requirements, which translates to variations in the
amount of heat generated by the computer’s processor, even-
tually leading to variations in the computer’s heat control fan
speed. The variations in the fan’s speed and the frequency
of read/write operations to disk-based storage create unique
vibration signatures, which maps uniquely to the computer’s
processing operations, leading to a breach of privacy of the
computer. Our work’s preliminary results suggest that computer-
based tasks can be mapped from their vibration signatures with
an accuracy of at least 70%. We additionally study the task
identification granularity of such an approach.

Index Terms—Condition monitoring, Computers, Security
breach, Vibration monitoring, Machine learning, Superlearners,
Industrial Internet of Things.

I. INTRODUCTION

Industry 4.0, coupled with the Industrial Internet of Things
(IIoT), has brought together machines/devices with high-speed
networking, facilitating rapid automation and data transfer
on the factory floors. Data-driven techniques for condition-
based monitoring and maintenance are gaining popularity and
immediate acceptance in diverse industrial domains. Indus-
trial monitoring systems typically rely on a heterogeneous
set of sensors for quantifying various physical behaviors of
industrial equipment such as vibrations, pressure differences,
rotatory motions, and acoustic signatures, generating massive
unstructured data and its challenges [1]. The data containing
this quantified information from pieces of equipment vary
in volume, velocity, and variety, and there exist state-of-
the-art methods for handling them efficiently. However, each
industrial application generates sensor data signatures, which
are uniquely identifiable with each industrial task [2], [3].

A typical IIoT-based industrial monitoring solution com-
prises the following consolidated functional blocks – sensing,
data communication, data storage, analytics, and decision.

A. Mukherjee, P. K. Deb, and S. Misra are with the Department of Computer
Science and Engineering, Indian Institute of Technology Kharagpur, India. e-
mail: anandarupmukherjee@ieee.org, (pallv.deb,sudipm)@iitkgp.ac.in

These functional blocks can be easily created using easily
available, cheap, and off-the-shelf sensors and components
such as Arduino and Raspberry Pi boards. Recreating these of-
ten complex industrial monitoring systems using off-the-shelf
components makes these systems highly compact and portable.
Although compact, these systems are powerful enough to
analyze consumer equipment’s mechanical behavior. Some of
these consumer equipment may include personal computers.
In this work, we highlight the possibility of a side-channel
attack, which involves identifying the operations on consumer
equipment with standard condition monitoring modules.

A. Vulnerability of Traditional PCs
Traditional computing systems such as personal comput-

ers (PCs) and servers are made up of a central processing
unit (CPU), volatile memory, and disk-based storage (HDD)
memory. Although modern computing systems rely on solid-
state storage drives (SSD), the presence of disk-based storage
is still very common, especially owing to the low cost of
such systems. Additionally, irrespective of HDD and SSD,
fans for temperature control still exist. The motherboards
connecting the various discrete components necessary for the
functioning of a full-fledged computer, mostly have automatic
heat dissipation mechanisms in the form of electrical motor-
based fans. The majority of the heat generated in a PC is
directly proportional to the number of computations a CPU has
to perform [4]. Relatively recent motherboards have automated
mechanisms, that monitor the increase in temperatures inside
the housing/cabinet of computing devices, and have the ability
to control the speed of these fans. The changes in fan speeds
attached to the housing/cabinet of a PC and the disk read-write
operations materialize in the form of vibrations, especially of
the PC cabinet. These vibrations correlated to PC operations
can be used as signatures for specific tasks being performed
in the PC. Higher the computations a CPU has to perform or
increase in read-write operations to the hard disk results in
increased vibrations. The vulnerability of a PC arises when,
for example, an accelerometer sensor strategically placed on
the PC cabinet is used to detect the changes in the vibration
signatures and reverse-engineer the information of the process
running in the PC. Such vulnerabilities are beyond implicit
security approaches such as in [5].

Example Scenario: An adversary may use the proposed
machine learning-based model that identifies application sig-
natures generated in the form of vibration and heat dissipation,
for computer programs on their private PC. The adversary
may attach (maliciously) a similar set of sensors on the

Pallav
Typewriter
© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

Figure 1: Overview of the proposed system

computer systems of interest or may use the accelerometer
on a smartphone. Without logging into the system, the ad-
versary gains the ability to identify the applications/routines
running on the target PC, without ever needing to log into the
system, simply based on the trained model from his PC. This
scenario certainly poses a threat to the privacy of traditional
computing systems, which might necessitate a relook at the
way traditional computing systems are designed.

B. Research Questions
In this work, we ask the following research questions in the

context of these low form-factor monitoring systems (in our
case, an accelerometer-based vibration monitoring system),
which functionally mimic industrial monitoring systems:

RQ1: Can we use industrial monitoring solutions for monitor-
ing computing devices?

RQ2: Can industrial monitoring solutions quantify the me-
chanical and environmental variations caused by the
mechanical changes of the supporting hardware of com-
puting devices?

RQ3: Can individual tasks on a computer be identified based
merely on these quantified mechanical signatures?

RQ4: Do industrial monitoring systems pose a threat to the
privacy of existing computing platforms? If so, to what
extent?

C. What we Propose
In this work, we outline and demonstrate the perceived

threats to the privacy of traditional computing systems from
IIoT-based industrial condition monitoring systems. We pro-
pose the use of accelerometer sensors, which are commonly
used for monitoring mechanical vibrations in industrial equip-
ment, for detecting the vibrations on the cabinet of a PC.
Figures 1 and 2 outline the scientific philosophy and hardware
schematic of our approach, respectively. The acquisition unit
consists of the sensor (accelerometer) and a wireless com-
munication module (including a power module). The wireless
module transfers the data to a remote adversary, who then
processes and identifies the running operations. Owing to
the foundational nature of this work, as a starting point, we
identify three broad classes of PC-based tasks depending on

Figure 2: Schematic diagram (hardware components)

the amount of computation C and frequency of changes in
computation ∆c. The choice of these three classes allows us to
have coarse, but distinctly identifiable vibration signatures on
the PC cabinet – ∆c0 (low), ∆c1 (medium), and ∆c2 (high).

The first class (∆c0), which we also refer to as the ‘baseline’
in the rest of this paper, consists of regular tasks, not explicitly
initiated by the user. Tasks such as basic operating system
(OS) functions, software updates, network connectivity, system
monitors, and others such for the crux of this class. In regular
PCs, from the perspective of a normal user, this is the state of
the PC after start-up, when no additional software or programs
are being executed by the user. We consider this class as the
one having the least amount of computations (relatively) when
compared to the other two classes.

Assumption 1. It is assumed that the PC is not running any
malware and is operating within its normal bounds.

The second class (∆c1) consists of applications/programs
considered to have mid-level computation requirements. These
applications are run on top of/ in addition to the baseline
operations. Tasks/programs such as browsers, online video
streaming applications, word processing software, and others
fall in this category. This class of vibration signature mostly
relies on the volatile memory (RAM, cache) for their sus-
tained functions. They seldom require high computations and
frequent periodic access to HDD storage.

The third and final class (∆c2) consists of applications and
programs, which are similar to ∆c1 run on top of baseline
operations. The applications/programs in this class of vibration
signatures are characterized by high CPU load in the form
of increased processing and frequent access to HDD for
storing and retrieving data during the course of their operation.
Applications/programs such as deep learning, high-end image
editing software, and others fall in this category.

Assumption 2. Traditional computing systems have an acces-
sible PC cabinet, have automated fan-based heat dissipation
mechanisms, and have moving disk-based storage for long-
term storage of data.

D. Contributions
In this work, we raise the question of whether data-driven

methods and advancements in industrial monitoring systems
and omnipresent structural homogeneity of traditional comput-
ing systems pose a threat to the privacy of PCs. In line with

3

the proposed research questions in Section I-B, we contribute
the following through this work:

• We construct a pocket-sized, accelerometer-based vibra-
tion measurement system, which can be placed on a PC
and is able to wirelessly transmit these signals to a remote
system.

• We collect and analyze the vibration signatures of various
pre-defined PC-based tasks from a test PC.

• We develop an algorithm for automatically classifying
the captured vibration signals into one of the pre-defined
classes.

• We use the trained model from the test PC vibration
signatures to identify tasks in an entirely new PC and
validate the accuracy with which the tasks are identified.

This work focuses on highlighting an overlooked vulnerability
concerning the privacy of existing computing systems. This
study aims to explore the extent to which this vulnerability
can be exploited to start discussing the counter-measures.
This work does not raise any ethical concerns. Conventional
security challenges in IoT devices and their solutions may be
found in [6].

We organize the rest of the paper as follows. We highlight
some of the existing literature in Section II. We then describe
the time-series information from the PC vibration signatures
on running the different applications in Section III, followed
by that in the frequency domain in Section IV. We then present
the possibility of breaching privacy based on the mentioned
signatures in Section V. We explain our setup in Section VI
and then present the performance of the developed model in
Section VII along with possible countermeasures in Section
VIII. Finally, we conclude in Section IX.

II. RELATED WORK

A. Vibration-Based Applications
Vibration data has been used for accomplishing multiple

applications. The authors in [7] developed a system consisting
of vibration sensors for detecting emergencies on a factory
floor or large buildings. They identified these emergencies
based on the signatures generated from varying movement
patterns. Similarly, Nwakanma et al. [8] proposed a similar
system using Long Short Term Memory (LSTM) model.
Further, Yu et al. [9] used a similar setup for localizing
personnel on production plants and large buildings using deep
learning models. Other applications include: vibration-based
communications [10], using vibration sensors on smartphones
to counter voice synthesis attacks [11], and others.

B. Attacks and Breaches
We present some of the security threats (software and

hardware) in real-world deployments. Software-based attacks
cause disruptions in the network flow and execution of regular
tasks on-board the devices. Differential fault analysis [12]
is one of the common software-based threats, which allows
adversaries to gain knowledge of the internal states, without
the need for ciphertexts. It induces faults into intermediate
blocks, which eventually creates anomalies in the subsequent
rounds, exposing the internal details. Keyword guessing at-
tacks [13], as the name suggests, also allows the generation

of ciphertexts by malicious users. These attacks allow access
to undesired users. Such challenges may be overcome by
increasing encryption rounds and adding an authentication
layer for legible users. The authors in [14] presented Denial
of Service (DoS) attacks, which is a different category of
attack and is usually achieved by flooding the network. They
proposed using the Tiny Encryption Algorithm (TEA), a block
cipher technique, to overcome such issues. However, TEA
has its limitations as it uses similar keys. Fault attacks are
another form that injects faults into the regular operation
routines creating disruptions. The authors in [15] proposed us-
ing Advanced Encryption Standards (AES) to overcome such
challenges. On other lines, the authors in [20] demonstrated a
method of side-channel attack using the acoustic information
generated on typing on the keyboard while on a Skype call.
Aliyu and Rahulamathavan [21] demonstrated similar attacks
on using the soft keyboards on Android smartphones.

On the other hand, some attackers target the hardware.
Mukherjee et al. [16] presented Hardware Trojan Attacks and
emphasized on its low resource footprint. Such attacks may be
mitigated by adopting split manufacturing. However, attackers
gain access to the hardware from different manufacturers by
inducing modeling attacks [17]. The authors in [19] presented
how attackers overwrite memory fragments in buffer overflow
attacks, which requires enhanced security hardware designs.
Additionally, Dang et al. [18] presented Linux-based IoT
device attacks. It is a fileless type of attack and is of par-
ticular importance as most IoT deployments use Linux-based
operating systems. They suggested using non-root users and
periodic shell command monitoring to overcome the attack.
On the other hand, Mehrabi et al. [22] proposed using elliptic
curve cryptography (ECC) for enhancing hardware security.

C. Data Forensic and Security

Data security practices in industries are of significant im-
portance to preserve device privacy and to secure operational
activities. In this section, we present some of the popular
security practices. The authors in [23] highlighted the data
vulnerabilities in communication networks. They presented a
secure decision-making method by ensuring trust among the
devices in the network, such that they do not tamper with the
data. Alrahis et al. [24] designed key-gate structures to confuse
machine learning-based attacks on the hardware. The authors
in [25] proposed a secured hardware virtualization-based re-
source splitting method for overcoming microarchitecture state
attacks. Sanchez et al. [26] proposed an end-to-end solution
for I4.0. They incorporated a Defense in Depth (DiD) strategy
coupled with lightweight encryption schemes for securing
their network and devices. Deebak and Al-Turjman [27] also
proposed a lightweight privacy preservation scheme for IoT
networks. They proposed a smartcard-based authentication
scheme, satisfying the Authentication and Key Agreement
(AKA) properties for securing big data. Comprehensive stud-
ies on using fog computing as a security layer ay be found in
[28], [29]. On the other hand, the authors in [30] highlighted
the security practices and challenges for Supervisory Control
and Data Acquisition (SCADA) systems.

4

Table I: Comparison of attacks and breaches in current literature.

Category Attack Characteristic Remedy

Software-based
attacks

Differential fault analysis [12]
Access to ciphertext
not requied

Increase the number of
computation rounds

Keyword guessing attack [13]
Any end user may
generate keyword
ciphertext

Aprior signatures by
owners before generating
the keyword ciphers

Denial of Service (DoS) [14]
Achievable through
network flooding

Tiny Encryption
Algorithm (TEA)

Fault attacks [15]
Fault injection even in
the middle rounds of block
ciphers

Advanced Encryption
Standard (AES)

Hardware-based
attacks

Hardware trojan attack [16] Low resource footprint Split manufacturing

Modelling attack [17]
Threat to physical unclonable
functions Chaotic oscillators

Linux-based IoT device
attacks [18] Fileless attack

Non root users and auditing
shell commands

Buffer overflow attack [19] Overwrite memory fragments
Enhanced security hardware
design

Sensor-based
attacks

Device privacy breach
(Proposed work) Access without credentials

Spread awareness and propose
methods

(a) x-axis (Ax) (b) y-axis (Ay) (c) z-axis (Az)

Figure 3: Lag plots of the time-domain accelerometer sensor values for baseline (BL), browser (BR), and deep learning (DL)
classes

D. Synthesis
Owing to the condition/tool monitoring methods in this

section, we develop the industrial monitoring-inspired pocket-
sized vibration measuring unit for collecting data from stan-
dard PCs. In such deployments, while both software and
hardware-based attacks cause deployment challenges, we sum-
marize how the proposed attack varies in comparison to the
others and its remedies in Table I. Irrespective of the solutions
for the attacks, the proposed work on the device privacy breach
from sensor data is one of a kind. It allows access to the
internal working and details of the executing routines without
the need for logging into the system. In this work, we attempt
to raise awareness about the same and plan to extend this work
by proposing solutions for overcoming this issue.

III. LEARNINGS FROM PC VIBRATION SIGNATURES

We engineer a system comprising of a digital accelerometer
and a WiFi-enabled processor board, which can be easily at-
tached to a PC cabinet. The sensed data from the accelerometer
continuously transmits data to a remote server hosting pre-
trained classifiers for identifying vibration signatures. This

system is functionally analogous to an industrial vibration
monitoring system, which relies on mechanical variations
of the monitored environment for quantifying the physical
behavior of the system under observation. This answers our
first research question (RQ1) that the core functionalities of
an industrial monitoring system can be seamlessly recreated
on a scale, which is small enough to be used for monitoring
a PC or a consumer computing setup.

In response to the second research question (RQ2) on
whether the minuscule mechanical vibrations of the support-
ing PC hardware components corresponding to changes in
the PC’s changing computing requirements can be distinctly
quantifiable, we describe the data collected in the subsequent
section (Section III-A).

A. Temporal Data Description

The time-domain representation of the collected vibration
signatures for the three broad categories – ∆c0, ∆c1, and
∆c2, corresponding to the test PC’s baseline, browser, and
deep learning tasks. We analyze the temporal variations in

5

(a) Baseline (Ax) (b) Browser (Ax) (c) Deep learning (Ax)

(d) Baseline (Ay) (e) Browser (Ay) (f) Deep learning (Ay)

(g) Baseline (Az) (h) Browser (Az) (i) Deep learning (Az)

Figure 4: Distribution of vibration signatures for the three categories of data along the x, y, z axes obtained from the
accelerometer sensor

the obtained signal using a lag plot, which is a plot of the
variations in the time-domain signal at t (x-axis) versus the
variation at t−1th instant (y-axis) for the three categories. Fig.
3 shows the lag plot for the three chosen categories of data,
each plot signifying data from each of the accelerometer’s
axis of observation – Ax (Fig. 3a), Ay (Fig. 3b), and Az (Fig.
3c). Although the lag plot for the first two classes of data –
baseline (BL) and browser (BR) – seem identical, the third
class – deep learning (DL) – is clearly discernible from the
previous two classes. Due to the high density of the data being
analyzed, we observe concentrated data points, particularly
at the center of each cluster. Interestingly, we observe few
or no outliers, which further establishes the stability of the
proposed system. Also, each of the clusters in the lag plots
follows a circular pattern. This behavior indicates that the data
captured by the accelerometer is periodic in nature, further
indicating the uniqueness of vibration signatures for each
PC-based task/application. Table II represents the standard
deviation values of each of the three categories of data for
each of the accelerometer’s observation axis. The intra-class
variations of the standard deviation values in this table further
indicates the possibility of having uniquely identifiable task-

Table II: Standard deviation of the accelerometer data.

Baseline Browser Deep learning
Ax 0.0052 0.0058 0.0072
Ay 0.0054 0.0059 0.0118
Az 0.006 0.007 0.008

based signatures in PC, which is in line with RQ2.

B. Temporal Data Distributions

To positively confirm RQ2, we analyze the temporal vibra-
tion signatures using histograms. This helps us to characterize
the distribution of each of the task-specific vibration signatures
for each of the accelerometer’s observation axes. Fig. 4 shows
the distribution of vibration signatures for the three categories
of data along the x, y, z axes obtained from the accelerometer
sensor. We observe that for all cases, the data points roughly
follow a normal distribution, but with varying skew and
kurtosis. This trend in the distribution of the captured temporal
data further leads us to believe that there exist unique and
discernible vibration signatures for task-based operations on a

6

(a) Ax axis. (b) Ay axis. (c) Az axis.

Figure 5: Observations on performing k-means clustering on the axes values on executing baseline (BL), browser (BR), and
deep learning (DL) routines

PC, which can be used to map vibration signatures of a PC’s
cabinet with actual tasks/computations executing within it.

C. Temporal Data Clustering
As a final measure, we cluster the data using k-means

clustering. We vary the number of clusters (k value) from 1 to
11 and obtain the elbow of the Within Cluster Sum of Squares
(WCSS) at the point when k is equal to 3, which is the number
of categories in our experiment. Based on this observation, we
perform the k-means clustering and present the clusters along
with the data points in them in Fig. 5. We observe that the data
points, irrespective of the axis, vary distinctively. The Ax axis
data points (Fig. 5a) have an increasing pattern for identifying
each of the categories of CPU routine. On the other hand,
Figs. 5b and 5c show lower Ay and Az values for browser
(BR) and baseline (BL) in comparison to deep learning (DL).

This behavior of the captured data, in addition to the ones
outlined in Sections III-A and III-B, positively confirm RQ2.
However, as the inter-category temporal variations are some-
times too small, such as in the case of BL and BR, these trends
may not be fully captured while employing an automated data
classification mechanism using machine learning.

IV. F-DOMAIN CONVERSION AND DATA SHAPING

To address the third research question (RQ3), we need to
adopt a method, which would be – 1) free from temporal
artifacts not belonging to the task signatures, 2) able to identify
minute differences in the vibration signatures, and 3) the
separation between the vibration signatures should be distinct
enough to be put in an automated classifier. Towards this, we
convert the time-domain vibration signatures to frequency-
domain (F-domain) to enhance the vibration signatures by
removing any temporal dependencies the signal may have.
Temporal dependencies may often lead to unwanted signal
artifacts, which are sensor or device-dependent (in turn affect-
ing the clarity of signal segregation of the individual tasks).
Initially, we split the temporal signals into segments 1 second
wide, which corresponds to the actual sensor sampling rate
of 500Hz. Considering ax(t) as the original signal, for a
sampling rate N , we split the data to generate an array of
segmented vibration signatures Ax(Ti) = [ax(ti) . . . ax(ti+1)]
at any arbitrary time Ti. We choose the value of N in
compliance with the Nyquist criteria. For a segmented signal

ax(tj), we compute its FFT. This operation can be represented
using the following expression:

ax(tj)FFT =

N−1∑
n=0

ax(tj)e
− i2πkn

N (1)

where e−
i2πkn
N represents the N th roots of unity for k =

0, 1, . . . N − 1. We repeat this over the entire signal (or the
array Ax(Ti)) and obtain,

F [Ax(Ti)] =[ax(t0)FFT ax(t1)FFT . . . ax(tj)FFT]T
j=(δN−1)

=

∑N−1
n=0 ax(t0)e−i2πkn/N∑N−1
n=0 ax(t1)e−i2πkn/N

. . .∑N−1
n=0 ax(tδ/N−1)e−i2πkn/N

 (2)

where δ is the length of the signal Ax(Ti). We then bin the
FFT coefficients of each split segment (10 bins in our case)
over the entire frequency range to capture the approximate
distribution of frequencies. We bin the signal frequencies and
calculate the corresponding values as B =

∑N
i=0 c, such that,

c =

{
1, if FFTcoeff > 0

0, otherwise
(3)

which represents that we count only for those frequencies
which have some value for FFT coefficients (FFTcoeff).

We repeat these steps for the data corresponding to each
axes. On obtaining all the binned data for the three accelerom-
eter axes (Ax, Ay, Az), we calculate the cumulative sum of
each frequency range, therefore resulting in a 1D array. This
array is the input for our classifier. In summary, we obtain
data in the form:

Bi,j =

B1,1 B1,2 . . . B1,i

. . .
Bj,1 Bj,2 . . . Bj,i

 (4)

where i ∈ [1, 10] and j ∈ [1, δ].
To demonstrate that splitting the full-range time-domain

signature of the activities does not hamper the nature or the
information content of the signal, we consider the total entropy
of the signal and the entropy of the signals after it was split.
For the FFTs (mth window), we calculate the power spectrum
as S(m) = (ax(tm)FFT)2 and the probability density as

7

(a) Baseline. (b) Browser. (c) Deep Learning.

Figure 6: PSD for the segmented signals (1 second wide) for all three vibration signature categories

P (m) = S(m)/
∑
i S(i). The normalized spectral entropy is

then calculated as:

Hn = −
N∑
m=1

P (m)log2P (m)

log2N
(5)

As Hn relies on the power spectrum S(m) of a signal, we
plot the variations in the Power Spectral Densities (PSD) of the
three data categories after (refer to Fig. 7) and before splitting
the signal (refer to Fig. 6). For the purpose of demonstrating
the rationale behind splitting the signal, we only illustrate the
plots using the signatures for the accelerometer x-axis. In Fig.
6, we observe that the PSD differs as the vibration signature
data category changes. In the case of baseline (Fig. 6a), we
observe the maximum spectral strength is 2.5× 1e− 6 units.
Similarly, we observe a similar maximum spectral strength in
the case of browsing (Fig. 6b), but with higher densities spread
across the spectrum bands. In the case of deep learning (Fig.
6c), we observe the maximum entropy, in the range of 4×1e−6
units. We attribute these observations to the variation of the
speed of the cooling fan, which proportionately increases or
decreases the vibrations of the PC cabinet. It may be noted that
PSDs in Fig. 6 follow a similar trend as its neighbors, proving
that the information content remains relatively unchanged for
the segments even on splitting.

Further, we plot the PSDs of the entire range of the signal
(without splitting) for the three vibration signature categories
in Fig. 7. We observe that the PSDs in this case follow a simi-
lar trend to the PSD in the case of the split/fragmented signals.
Interestingly, the difference between the entropies under each
category of execution routine remains the same, proving that
the splitting of the signals preserves the signal characteristics
and also demonstrates the stability of our proposed approach.

V. VIBRATION-BASED PRIVACY BREACHING

A positive response for RQ3 leads us to further investigate
if the uniqueness of computing task-based vibration signatures
can be used to breach the privacy of computing systems. For
this, we develop a methodology, which relies on identifying the
frequency-domain information from the collected task-specific
vibration signatures. This frequency-domain information is
used to train a super learner. Fig. 8 depicts the proposed
methodology for developing the system that identifies the
category of routines executing on a computer. We obtain
the accelerometer data (Ax, Ay, and Az) from the externally

Figure 7: PSD of the entire signal for the three vibration
signature categories

positioned accelerometer sensor unit on a standard PC cabinet.
This time-domain data from each of the accelerometer axes
is split into windowed samples of 1 second each, which
corresponds to the sensor sampling frequency of 500Hz. This
makes the number of data/sample points equal to the sampling
rate of the sensor. Each of these split time-domain samples is
converted to the frequency domain using FFT. Subsequently,
a binning operation (refer to Section IV and Equation 3) bins
the coefficients of the FFT operation into 10 bins. We add
the signals from the three channels (accelerometer x, y, and z
axes) to capture any/all variations in the vibration signatures.
This step also has the added advantage of making our approach
independent of the orientation of the accelerometer sensor and
enhancing the repetitive frequency components present in all
three axes of the accelerometer data. The data in this form is
analogous to that of Equation 4.

We train multiple classifiers on this data to determine
the one which offers superior results. Fig. 9 shows the
performance of the classifiers trained against the three data
categories. We observe that these classifiers tend to confuse
some of the vibration signatures in a class with that of other
classes. For instance, all the classifiers efficiently identify
the deep learning task (bottom right cell of each confusion
matrix). However, most of the classifiers consistently predict
erroneously some instances of the tasks for the baseline and
browser category of data. This effect becomes prominent for

8

Figure 8: Activity identification methodology

unseen test data. This is because the two routines mostly
involve similar OS operations, apart from some cache usage,
HTTP requests, and the corresponding reply reception. Addi-
tionally, we also attribute this behavior to the working princi-
ple of the classifiers. For instance, Random forest, Extra Trees,
and AdaBoost focus on decisions from multiple decision trees
and then generalizing the output. The splits of the decision
trees are based on the purity of the data and operations such
as BL and BR (which are minutely different) tend to represent
similar features. Further, the varied outcome in AdaBoost is
intuitively because of the boosting method. It diminishes the
possibility of classifying BL. The KNN model also reports
similar results and we attribute it to a similar reason that the
data points for BL and BR lie close to one another. Gaussian
Naive Bayes and SVC demonstrate better classifications as
they operate on a combination of probabilistic and statistical
methods, which has a better insight into the difference between
the two activities. Irrespective of the listed flaws, each of these
models has its own set of unique features, which we tend to
exploit to get a better insight into this work. Consequently,
we make use of a super-learner [31], in conjunction with
the classifiers to enhance the classification accuracy of our
approach. A super learner involves performing a k-fold split
training and evaluation on a list of machine learning based
models that individually perform well on a given dataset.
After the cross-validation of the model, the super learner
uses these out-of-fold predictions along with the entire dataset
for training a unique/final model. It performs the same or
better than the best individual classifier model, guaranteeing
no under-performance.

VI. EXPERIMENT DESIGN

We use a desktop computer for obtaining the initial vibration
data from the three task categories for demonstration purposes.
This data acts as the training data for our proposed approach.
Subsequently, we use a laptop to obtain its vibration data and
categorize its tasks into the three task groups through our
trained classifier. We use an MPU6050 accelerometer sensor
interfaced using a NodeMCU microprocessor. The data from

Figure 9: Confusion matrices from super learner base models

the IMU-attached microprocessor is collected in a separate
computer. We attach the sensor arrangement on the surface
of both the computers for recording the vibration signatures
on executing the categorical tasks mentioned in Section I-C.
This experiment’s main aim is to evaluate the effectiveness
of our proposed approach to use vibration-based signatures
for identifying PC-based tasks and highlighting that although
the computing platforms with the training and testing data are
vastly different, it still identifies task categories successfully.

A. Data Collection
The data collection mechanism consists of an Inertial Mea-

surement Unit (IMU) sensor attached to a low-cost Wi-Fi en-
abled microprocessor. We first calibrate the IMU (MPU6050)
with a sampling rate of 500 Hz. As mentioned earlier, we
use two data sources – a desktop PC and a laptop. The
standard Desktop PC (PC1) has an i3 core processor and 16GB
RAM, with disk-based storage of 500 GB. The computing
components of PC1 are housed in a tower cabinet, with
provision for motherboard-triggered control of cooling fan
speeds in response to changes in the cabinet temperature. We
use vibration data from this computer for training the super
learner using our proposed approach.

On the other hand, we consider an i5 core processor Dell
Inspiron laptop (PC2) with 8 GB RAM and 1 TB disk-based
storage for validating our approach. Although the character-
istics of the components on-board both PCs are the same,
they have different form factors. Additionally, laptops generate
lesser vibrations than cabinet-based computers due to the
compact arrangement of components inside the laptop. We use
these setups for demonstrating the working of our proposed
approach based on the following categorically identified tasks.

B. Categorical Tasks
We set our Baseline (BL) when the PC is in its idle

state and consider this as a ∆c0 category task. We terminate
all (unnecessary) background processes while capturing this
class’s data using the IMU sensor. We record a combination of
baseline category data with and without Internet connectivity.
For ∆c1 tasks, we consider activities related to web browsing.
In particular, we play videos on streaming sites such as
YouTube and Netflix. Lastly, we consider training various
deep learning models like the ∆c2 task as it consists of high
computations and repeated access to the disk-based storage

9

Table III: Metrics on training the proposed super learner
with AdaBoost (AdB), Decision Tree (DT), Extra Trees (ET),
Gaussian Naive Bayes (GNB), K-Nearest Neighbors (KNN),
Support Vector Classifier (nuSVC), and Random Forest (RF).

Models
(atomic)

Score Fit time (s) Test time (s)
Mean Std. Mean Std. Mean Std.

AdB 0.64 0.03 51.31 0.14 0.84 0.08
DT 0.69 0.03 3.64 1.24 0.33 0.36
ET 0.69 0.03 199.47 0.73 27.37 0.52

GNB 0.76 0.04 2.34 1.11 0.72 0.37
KNN 0.72 0.03 0.42 0.44 22.19 1.77

NuSVC 0.65 0.08 0.77 0.22 0.28 0.17
RF 0.76 0.04 110.39 2.38 5.06 0.56

for read/write tasks while training the model consisting of
a series of feed-forward and backpropagation operations. We
used Long-Short Term Memory (LSTM) for training time-
series data and a Transfer-learning model for training images
under the deep learning category of tasks. The selection of
these deep learning tasks ensures storage of the weights and
repetitive input and output operations from both primary and
secondary memories. It may be noted that while executing the
tasks on the computer systems, we terminated all background
processes attributed to non-essential OS operations of these
computers. This was done to ensure that the data collected
was with minimal vibration signature influence from other
tasks. For instance, we disconnect from the Internet to avoid
unauthorized downloads and updates and any other operation
that may affect the PC components’ vibration signatures. We
collect the following data from PC1 and PC2:

1) Training data from PC1 (desktop): We collect a min-
imum of 15 minute vibration trace of each of the
categorical tasks (baseline, browser, deep learning). This
data is used for training the super learner.

2) Validation data from PC1 (desktop): We collect smaller
2 − 3 minute vibration traces for specific tasks falling
in one of the three identified categories. Some of
these are baseline, Youtube (browser), Netflix (browser),
Video conferencing over Microsoft Teams (browser),
Python-based LSTM model (deep learning), Python-
based Transfer learning (deep learning).

3) Validation data from PC2 (laptop): We collect smaller
2−3 minute vibration traces for specific tasks falling in
one of the three identified categories. Some of these are
baseline, Youtube (browser), Netflix (browser), Python-
based LSTM model (deep learning), Python-based CNN
(deep learning).

VII. PERFORMANCE EVALUATION

A. Training the Super Learner
We automate the detection of task categories based on

vibration signatures by training a super learner along with the
base models enumerated in Table III. We choose these models
as they provide superior performance in terms of post-training
metrics, as shown in Fig. 9. On training each of the models, we
obtain an average accuracy of 70%. These models contribute

Figure 10: Correct predictions instances of the validation data
from PC1

(a) Baseline (with some elementary activities).

(b) Netflix.

Figure 11: Uncertain predictions on validation data from PC1
(green for correctly classified and red for incorrect ones)

to the proposed super leaner’s training, which finally reports
an accuracy of 79% on the k-fold training data. As shown in
Table III, the super learner takes significant time for training
as forest-based models such as Extra trees and Random Forest
take almost 200 seconds for training. However, they take less
test time compared to the k-nearest neighbor method.

We evaluate the super learner trained in Section VII-A on
data from the same standard computer we used to obtain the
training dataset. We input the consolidated binned data of
the three axes and record the predictions. We observe that
the model identifies the baseline accurately on a majority of
the samples (Fig. 10). On the other hand, it classifies mouse
clicks and rollovers (baseline in Fig. 11a) into the browser
category, indicating an activity that is separate from baseline
tasks and correctly identifies the presence of an active user.
In the case of Netflix (Fig. 11b), the model classifies it as
baseline on some occasions in contrast to that of YouTube.
The model accurately identifies browser activity in the case of
YouTube in almost all instances. We attribute this difference
in behavior to the way these two streaming services buffer
their data in memory. The super learner classifies memory and
processing-intensive tasks in the deep learning category (Fig.
10). This behavior is expected for tasks needing to undergo
above-median computations and repeated read/write access to
RAM and disk-based storage. A detailed explanation of the
results from the validation of PC1 and PC2 data is provided
in the subsequent section.

10

B. Data Validation
As mentioned earlier, we validate the developed super

learner classifier using the vibration data from both PC1 and
PC2 on performing different tasks. We perform multiple tasks
on both the computers, which are operationally analogous to
the categorical tasks mentioned in Section VI-A. Although
we observe promising results during our experiments, we also
notice uncertainties in some cases.

1) Predictions on PC1 Activities: Fig. 10 shows the count
of correct task-specific predictions made using our proposed
approach. The method correctly identifies the PC1’s baseline
validation data. This is because, during an idle state, the PC is
unlikely to make significant changes in its fan and HDD head
movements. On performing browser-related activities such as
streaming YouTube videos and hosting video conferences, the
PC typically uses its cache and some processing for updating
the interface screens. The classifier correctly identifies these
activities with minor misclassifications in some of the samples
of each task data. Interestingly, both behaviors are the same.
We attribute this behavior to the conditions that prolonged
browser usage generates heat and reduces work on other
processes (as the cache gets overloaded). Additionally, we
also observe correct predictions on deep learning activities due
to the constant high amounts of computations and read/write
operations on the HDD. The correct prediction of the un-
rar/unzipping compressed files also confirms the uniqueness
in vibration signatures of the PC on continuous interaction
with the HDD.

However, we observe some dubiety in the classifier predic-
tions (Fig. 11). We run our mouse around the screen and make
a few clicks while recording the vibration data for fashioning
a variant of baseline. We observe in Fig. 11a, the classifier
identifies this as BR in most cases and some as DL. Intuitively,
we attribute this to the cache and interface usage processes in-
stead of the earlier baseline activity. We infer that the classifier
correctly classifies activity (irrespective of intensity) compared
to the idle state, which helps identify if the user is using the
PC. Moreover, in addition to watching videos on YouTube,
we performed the same activity on streaming videos over
Netflix. We observe that the classifiers have mixed predictions
on BL and BR (Fig. 11b). This misclassification in the Netflix
data is attributed to the way the Netflix platform caches and
buffers videos for streaming. Interestingly, since Netflix does
not invoke the HDD-based operations, the classifier does not
classify it as DL.

2) Predictions on PC2 Activities: We perform similar op-
erations on the laptop and identify tasks using our proposed
approach. The laptop being a compact computing device
tends to produce much lesser vibrations compared to desktop
computers. Similar to PC1, we observe in Fig. 12 that it
correctly identifies PC2 in its idle state (baseline). However, in
contrast to Netflix in PC1, it correctly categorizes the activity
as BR. Moreover, we observe some inconsistency in the case of
YouTube (Fig. 13a). Beyond the inconsistency, we notice that
the classifier correctly captures the state when the user uses
the PC2, irrespective of its form factor and relative stability
compared to the tower cabinet in PC1. The laptop’s reduced
vibrations also cause sub-optimal performance in identifying

Figure 12: Correct prediction instances of the validation data
from PC2

(a) YouTube.

(b) Deep learning.

Figure 13: Uncertain predictions on validation data from PC2
(green for correctly classified and red for incorrect ones)

the deep learning task (Fig. 13b). In comparison to YouTube,
as deep learning activity uses more processing and HDD head
movement, we notice more BR classifications than BL, which
suggests that the sensor and classifier correctly capture the
variations in the hardware vibrations. We infer that depending
on the PCs’ hardware setup, the developed model needs
tweaking, which we plan to address in our extended work.

VIII. DISCUSSION AND COUNTERMEASURES

Through the performance evaluation of our approach, we
reiterate that principally, it is possible to train a classifier
to read computing task-based vibration signatures from a
computer and identify similar task-based patterns in other
computers without the need to log-in to the system under
observation. This also affirms the initial research questions in
RQ3 and RQ4. This approach highlights a significant privacy
vulnerability in the existing computing systems, as tradition-
ally, security and privacy approaches were either focused on
securing network-based intrusions or required physical access
to a computer’s internal hardware.

To limit a computing system from privacy breaches using
strategies similar to – Tremors, some straightforward and easy-
to-implement countermeasures may be adopted. The first and
foremost is limiting the cooling fan speed or choosing alter-
nate processor cooling mechanisms such as liquid-based CPU
coolers. Secondary approaches include using SSDs instead
of disk-based ones to remove any or all vibrations due to

11

data read/write onto these drives. Finally, some complicated
methods may include using an underlying software or code
to obfuscate the vibration signatures specific to actual tasks
being executed on the computer. However, this approach is
not efficient in terms of energy consumption and longevity.

IX. CONCLUSION

In this work, we demonstrated the possibility of side-
channel attacks using off-the-shelf condition monitoring IIoT
devices. As proof of concept, we used an accelerometer sensor
to read the signatures generated from the cooling fans on
a standard personal computer and identify the operations.
As an example, an adversary may simply put his phone on
top of a PC cabinet and capture the vibration signatures.
Through this work, we explored the extent to which the
privacy of existing computing systems can be exploited using
machine condition monitoring systems, typically employed in
Industrial IoT-based monitoring of machinery. We developed
and demonstrated how a classifier trained on the vibration
signatures of computing tasks based on one computer could
be used to identify tasks in a different computer, which the
system has not previously seen. Finally, we briefly outline
the possible causes of under-performance of our approach and
possible approaches to safeguarding a computer from Tremors.

In the future, we aim to refine this approach to enable a
more satisfactory detection of individual tasks on a computer,
and not just task categories. We also plan to study the
uniqueness of vibration signatures generated by the computer’s
OS-specific operations, to uniquely identify the patterns each
software adopts during its operation on a computer. We also
plan to study the behavior of the hard disks individually by
placing the accelerometer sensor directly on them, rather than
only on the cabinet. This will potentially help in generating
further granular insights.

REFERENCES

[1] H. Jo, J. Kim, P. Porras, V. Yegneswaran, and S. Shin, “GapFinder:
Finding Inconsistency of Security Information From Unstructured Text,”
IEEE Transactions on Information Forensics and Security, vol. 16, pp.
86–99, 2021.

[2] G. Sharma, V. Tripathi, and A. Srivastava, “Recent Trends in Big Data
Ingestion Tools: A Study,” in Research in Intelligent and Computing in
Engineering. Springer, 2021, pp. 873–881.

[3] K. Basu, S. S. Hussain, U. Gupta, and R. Karri, “COPPTCHA: COPPA
Tracking by Checking Hardware-Level Activity,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3213–3226, 2020.

[4] “HP Notebook PCs - Why Computers Generate Heat,” accessed on 23
Sep. 2021. [Online]. Available: https://support.hp.com/in-en/document/
c02655320

[5] D. Meng, R. Hou, G. Shi, B. Tu, A. Yu, Z. Zhu, X. Jia, Y. Wen,
and Y. Yang, “Built-in Security Computer: Deploying Security-First
Architecture Using Active Security Processor,” IEEE Transactions on
Computers, vol. 69, no. 11, pp. 1571–1583, 2020.

[6] P. I. R. Grammatikis, P. G. Sarigiannidis, and I. D. Moscholios, “Secur-
ing the Internet of Things: Challenges, Threats and Solutions,” Internet
of Things, vol. 5, pp. 41–70, 2019.

[7] Y. Yu and T. Weis, “A Privacy-Protecting Indoor Emergency Monitoring
System Based on Floor Vibration,” in Proceedings of the ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2020 ACM International Symposium on Wearable
Computers. Association for Computing Machinery, 2020, p. 164167.

[8] C. I. Nwakanma, F. B. Islam, M. P. Maharani, D.-S. Kim, and J.-M. Lee,
“IoT-Based Vibration Sensor Data Collection and Emergency Detection
Classification using Long Short Term Memory (LSTM),” in Proceedings
of International Conference on Artificial Intelligence in Information and
Communication (ICAIIC), 2021, pp. 273–278.

[9] Y. Yu, M. Waltereit, V. Matkovic, W. Hou, and T. Weis, “Deep Learning-
Based Vibration Signal Personnel Positioning System,” IEEE Access,
vol. 8, pp. 226 108–226 118, 2020.

[10] G. Zhao, B. Du, Y. Shen, Z. Lao, L. Cui, and H. Wen, “LeaD: Learn
to Decode Vibration-Based Communication for Intelligent Internet of
Things,” ACM Transactions on Sensor Networks, vol. 17, no. 3, 2021.

[11] S. A. Anand, J. Liu, C. Wang, M. Shirvanian, N. Saxena, and Y. Chen,
“EchoVib: Exploring Voice Authentication via Unique Non-Linear Vi-
brations of Short Replayed Speech,” ser. ASIA CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 6781.

[12] N. Vafaei, S. Saha, N. Bagheri, and D. Mukhopadhyay, “Fault Attack on
SKINNY Cipher,” Journal of Hardware and Systems Security, vol. 4,
no. 4, pp. 277–296, 2020.

[13] J. Li, M. Wang, Y. Lu, Y. Zhang, and H. Wang, “ABKS-SKGA:
Attribute-Based Keyword Search Secure Against Keyword Guessing
Attack,” Computer Standards & Interfaces, vol. 74, p. 103471, 2021.

[14] V. Sharma and A. Sharma, “IoT Security Architecture with TEA for
DoS Attacks Prevention,” in Advances in Information Communication
Technology and Computing. Springer, 2021, pp. 215–226.

[15] S. Saha, A. Bag, D. B. Roy, S. Patranabis, and D. Mukhopadhyay, “Fault
Template Attacks on Block Ciphers Exploiting Fault Propagation,” in
Proceedings of the Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2020, pp. 612–
643.

[16] R. Mukherjee, V. Govindan, S. Koteshwara, A. Das, K. K. Parhi, and
R. S. Chakraborty, “Probabilistic Hardware Trojan Attacks on Multiple
Layers of Reconfigurable Network Infrastructure,” Journal of Hardware
and Systems Security, vol. 4, no. 4, pp. 343–360, 2020.

[17] V. S. Balijabudda, D. Thapar, P. Santikellur, R. S. Chakraborty, and
I. Chakrabarti, “Design of a Chaotic Oscillator based Model Building
Attack Resistant Arbiter PUF,” in Proceedings of the Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). IEEE, 2019,
pp. 1–6.

[18] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and
J. Yang, “Understanding Fileless Attacks on Linux-Based IoT Devices
with Honeycloud,” in Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, 2019, pp.
482–493.

[19] B. Xu, W. Wang, Q. Hao, Z. Zhang, P. Du, T. Xia, H. Li, and X. Wang,
“A Security Design for the Detecting of Buffer Overflow Attacks in IoT
Device,” IEEE Access, vol. 6, pp. 72 862–72 869, 2018.

[20] A. Compagno, M. Conti, D. Lain, and G. Tsudik, “Don’t Skype & Type!
Acoustic Eavesdropping in Voice-Over-IP,” 2017.

[21] H. T. Aliyu and Y. Rahulamathavan, “Type and leak your ethnicity on
smartphones,” in Proceedings of International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019, pp. 2557–2561.

[22] M. A. Mehrabi, C. Doche, and A. Jolfaei, “Elliptic Curve Cryptogra-
phy Point Multiplication Core for Hardware Security Module,” IEEE
Transactions on Computers, vol. 69, no. 11, pp. 1707–1718, 2020.

[23] G. Rathee, S. Garg, G. Kaddoum, and B. J. Choi, “A Decision-Making
Model for Securing IoT Devices in Smart Industries,” IEEE Transactions
on Industrial Informatics, pp. 1–1, 2020.

[24] L. Alrahis, S. Patnaik, J. Knechtel, H. Saleh, B. Mohammad, M. Al-
Qutayri, and O. Sinanoglu, “UNSAIL: Thwarting Oracle-Less Machine
Learning Attacks on Logic Locking,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 2508–2523, 2021.

[25] H. Omar, B. D’Agostino, and O. Khan, “OPTIMUS: A Security-Centric
Dynamic Hardware Partitioning Scheme for Processors that Prevent
Microarchitecture State Attacks,” IEEE Transactions on Computers,
vol. 69, no. 11, pp. 1558–1570, 2020.

[26] A. Mosteiro-Sanchez, M. Barcelo, J. Astorga, and A. Urbieta, “Securing
IIoT using Defence-in-Depth: Towards an End-to-End secure Industry
4.0,” Journal of Manufacturing Systems, vol. 57, pp. 367–378, 2020.

[27] B. D. Deebak and F. AL-Turjman, “Lightweight Authentication for
IoT/Cloud-Based Forensics in Intelligent Data Computing,” Future
Generation Computer Systems, vol. 116, pp. 406–425, 2020.

[28] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “Towards a
Systematic Survey of Industrial IoT Security Requirements: Research
Method and Quantitative Analysis,” in Proceedings of the Workshop on
Fog Computing and the IoT, ser. IoT-Fog ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 5663.

[29] ——, “A Systematic Survey of Industrial Internet of Things Security:
Requirements and Fog Computing Opportunities,” IEEE Communica-
tions Surveys and Tutorials, vol. 22, no. 4, pp. 2489–2520, 2020.

[30] D. Pliatsios, P. Sarigiannidis, T. Lagkas, and A. G. Sarigiannidis, “A
Survey on SCADA Systems: Secure Protocols, Incidents, Threats and

https://support.hp.com/in-en/document/c02655320
https://support.hp.com/in-en/document/c02655320

12

Tactics,” IEEE Communications Surveys Tutorials, vol. 22, no. 3, pp.
1942–1976, 2020.

[31] M. J. van der Laan, E. C. P. Eric, and A. E. Hubbard, “Super learner,”
Statistical applications in genetics and molecular biology, vol. 6, no. 1,
2007.

Anandarup Mukherjee is currently a Senior Re-
search Fellow and Ph.D. Scholar in Engineering at
the Department of Computer Science and Engineer-
ing at Indian Institute of Technology, Kharagpur. He
finished his M.Tech and B.Tech from West Bengal
University of Technology in the years 2012 and
2010, respectively. His research interests include,
but are not limited to, networked robots, unmanned
aerial vehicle swarms, Internet of Things, Industry
4.0, 6G and THz Networks, and enabling deep
learning for these platforms for controls and com-

munications. His detailed profile can be accessed at http://www.anandarup.in

Pallav Kr. Deb is a Ph.D. Research Scholar in
the Department of Computer Science and Engi-
neering, Indian Institute of Technology Kharagpur,
India. He received his M.Tech degree in Information
Technology from Tezpur University, India in 2017.
Prior to that, he has completed the B. Tech degree
in Computer Science from the Gauhati University,
India in 2014. The current research interests of Mr.
Deb include UAV swarms, THz Communications,
Internet of Things, Cloud Computing, Fog Com-
puting, and Wireless Body Area Networks. Further

details are available in https://pallvdeb.github.io/

Sudip Misra (M09SM11) is a Professor with the
Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur. He re-
ceived his Ph.D. degree in Computer Science from
Carleton University, in Ottawa, Canada, and the mas-
ters and bachelor’s degrees, respectively, from the
University of New Brunswick, Fredericton, Canada,
and the Indian Institute of Technology, Kharagpur,
India. Dr. Misra is the Associate Editor of the IEEE
Transactions Mobile Computing and IEEE Systems
Journal, IEEE Transactions on Sustainable Comput-

ing, IEEE Network, and Editor of the IEEE Transactions on Vehicular Com-
puting. His current research interests include algorithm design for emerging
communication networks and Internet of Things. Further details about him
are available at http://cse.iitkgp.ac.in/ smisra/.

	Introduction
	Vulnerability of Traditional PCs
	Research Questions
	What we Propose
	Contributions

	Related Work
	Vibration-Based Applications
	Attacks and Breaches
	Data Forensic and Security
	Synthesis

	Learnings from PC Vibration Signatures
	Temporal Data Description
	Temporal Data Distributions
	Temporal Data Clustering

	F-Domain Conversion and Data Shaping
	Vibration-based Privacy Breaching
	Experiment Design
	Data Collection
	Categorical Tasks

	Performance Evaluation
	Training the Super Learner
	Data Validation
	Predictions on PC1 Activities
	Predictions on PC2 Activities

	Discussion and Countermeasures
	Conclusion
	References
	Biographies
	Anandarup Mukherjee
	Pallav Kr. Deb
	Sudip Misra

