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Abstract—In this paper, we present a Q-learning-enabled safe navi-
gation system – S-Nav – that recommends routes in a road network
by minimizing traveling through categorically demarcated COVID-19
hotspots. S-Nav takes the source and destination as inputs from the
commuters and recommends a safe path for traveling. The S-Nav sys-
tem dodges hotspots and ensures minimal passage through them in
unavoidable situations. This feature of S-Nav reduces the commuter’s
risk of getting exposed to these contaminated zones and contracting
the virus. To achieve this, we formulate the reward function for the
reinforcement learning model by imposing zone-based penalties and
demonstrate that S-Nav achieves convergence under all conditions. To
ensure real-time results, we propose an Internet of Things (IoT)-based
architecture by incorporating the cloud and fog computing paradigms.
While the cloud is responsible for training on large road networks,
the geographically-aware fog nodes take the results from the cloud
and retrain them based on smaller road networks. Through extensive
implementation and experiments, we observe that S-Nav recommends
reliable paths in near real-time. In contrast to state-of-the-art techniques,
S-Nav limits passage through red/orange zones to almost 2% and close
to 100% through green zones. However, we observe 18% additional
travel distances compared to precarious shortest paths.

Index Terms—Path planning, Reinforcement Learning, Hotspots, Q-
Learning Model, Fog Computing, Shortest Path, Internet of Things

1 INTRODUCTION

The COVID-19 virus has spread throughout all major coun-
tries with an explosion in the number of infected individ-
uals. The small size and intangible nature of the virus has
led to an uncontrollable spread across the world, resulting
in creation of COVID-19 hotspots. Since contact tracing in
these areas is challenging [1], the concerned authorities
identify these hotspots and categorize them as red, orange,
or green zones. These zones are classified based on the
severity of the spread, and the restrictions in each zone vary
accordingly. Although the conditions are adverse, people
need to commute from one place to the other regularly for
work and basic amenities. Safe Transportation is a concern
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Figure 1: Road route planning in presence of hotspots
marked as red, orange, and green zones.

at this moment, and avoidance of hotspots is of paramount
importance. Conventional route-finding methods such as
shortest path and optimized path algorithms [2] do not
suffice in finding safe routes in COVID-19 environments.
However, a road map consists of a complex network of
multiple routes from a particular source (S) to a destination
(D). In such situations, intelligent routines that recommend
routes that bypass hotspots or minimize passage through
them is necessary for ensuring the safety of the people.

In this work, we propose and develop a Q-learning-based
smart navigation system – S-Nav – that avoids COVID-
19 hotspots according to the category of the zones for
ensuring the safety of the commuters. S-Nav takes S and
D as inputs from the users/commuters and recommends
a safe path (S-Nav path) that – 1) is optimal and 2) min-
imizes traveling through the hotspots. To achieve this, we
design the road route recommender system by formulating
rewards based on the categorical hotspot zones in a road map
like the one in Fig. 1. We also ensure minimal exposure
by minimizing the travel distance through the zones. In
summary, we account for the category of the zones and the
travel length in each zone. In addition to the need for safe
routes in road networks, real-time results are also essential
in mobile environments. However, Q-learning methods de-
pend on matrix-based operations, which are relatively time-
consuming, specifically for large road networks. Since the
Internet of Things (IoT)-based solutions have the potential
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to overcome such issues [3], we propose a distributed archi-
tecture for our system by adopting cloud and fog computing
paradigms to reduce the computation time in S-Nav. We
execute a preliminary road learning routine on the cloud
servers for large road networks (cities/states) and forward
the trained model to the fog nodes (FNs). The FNs then
sight attention to granular details and retrain them based
on designated geographical regions. Since FNs are usually
resource-constrained, it is suitable to execute S-Nav on
small-scale road networks. Additionally, the FNs are closer
to the commuters, which helps in reducing latency. The FNs
may also keep track of the changing categories of zones and
update its database accordingly. In case an area has no fog
nodes, the commuters may receive the recommended routes
directly from the cloud with some additional delays. It may
be noted that the proposed S-Nav system may extend to
any application that involves the need to avoid traveling
through certain zones/regions. These may include hazards
such as, but not limited to, radiations, poisonous gas leaks,
oil tank blasts, pandemics, riots, blockages, and others. In
this work, we choose the COVID-19 scenario because of: 1)
the need of the hour and the urgency to restrict the spread
of the COVID-19 virus, and 2) a proof of concept to show
the feasibility of S-Nav.

Example Scenario: We illustrate the working of the proposed
S-Nav system by considering a commuter who needs to
travel from location A to B in the map in Fig. 1. Conven-
tional road route planning techniques may recommend an
optimal path (Route 1 in Fig. 1) based on the distance and
traffic conditions. However, this path may pass through one
of the categorical hotspots, which exposes the commuter
to the threat of contracting the COVID-19 virus. In such
scenarios, the path recommended by S-Nav (Route 2 in Fig.
1) helps in avoiding the risky zones and ensures safe travel,
reducing the risk of exposure. Additionally, as we design
the execution and response to navigation requests from the
FNs close to the commuters, the S-Nav system recommends
routes in near real-time. Additionally, pre-trained models
from the cloud also help ensure low retraining time at the
FNs and fast local convergence (geographical region).

1.1 Difference of S-Nav from commercial navigation
tools

Some of the most commonly used applications are Google
Maps, Apple Maps, BackCountry Navigator, HERE WeGo Maps,
and others. Apart from their uniqueness in features such
as online/offline, personalization, and visualization, these
applications typically focus on road traffic, blockage, speed,
and distance for finding the shortest/optimized route from
source to destination. Such methods are not suitable for use
in the current scenario of COVID-19. The commuters need to
avoid traveling through hotspots to reduce exposure. S-Nav
recommends paths that bypass traveling through hotspots.
In unavoidable situations, S-Nav ensures minimal travel
through them.

1.2 Contribution

In this work, we propose and develop an IoT-based system
– S-Nav – for recommending safe road routes in a road

network by avoiding COVID-19 hotspots and ensuring the
safety of the commuters. Towards this, our specific set of
contributions are:

• S-Nav System: The proposed S-Nav is a Q-based
reinforcement learning road route recommender
system for ensuring commuters’ safety from the
COVID-19 virus while travelling.

• Rewards: To ensure complete/partial avoidance of
the hotspot zones, we impose penalties based on the
category of the zones. We also ensure minimal travel
through the zones in case of unavoidable situations.

• IoT-based Architecture: To minimize the training
time and the time for delivering results, we adopt
a fog-cloud architecture for the S-Nav system.

• Evaluation: To demonstrate the performance of the
proposed S-Nav system, we perform experiments
exhaustively and present results.

It may be noted that although we performed our experi-
ments on datasets based on real road maps, we annotated
the hotspots and their categories randomly before training
and implementation.

We organize the rest of the paper as follows. We present
some of the existing literature in Section 2, followed by
the proposed method in Section 3. We then present our
implementation setup in Section 4 and the observed results
in Section 5, and finally conclude in Section 6.

2 RELATED WORK

Road route/path planning has been an area of great interest
among researchers. Apart from parameters such as distance,
road route planning techniques also consider traffic, data
derived from GPS systems, and others to determine efficient
paths. In this section, we categorize and briefly describe
some of the existing route planning methods in literature.

2.1 Road route/path planning techniques

Silva et al. [4] proposed a method for localizing the robot-
s/devices and support them for navigation using Kinect
sensor and Convolution Neural Networks (CNN). Similarly,
the authors in [5] proposed a localization and navigation
tool using Radio Frequency Identification (RFID) and petri
net technologies. The authors in [6] designed a routing
model by considering intersection signals and real-time
velocity of the vehicle. The authors ensured reduced travel
time and energy consumption. The authors in [7] developed
a model based on Dempster-Shafer theory to calculate the
uncertainty (road conditions) in cost function while using
Dijkstra’s algorithm. In [8], the authors built a two-step
model (using K-path and shuffled frog leaping algorithm)
for dynamic path planning by considering real-time traf-
fic data and travel speed as parameters. Customer-centric
routes have a unique impact than conventional ones. It is
essential to model the routes according to the requests. The
authors in [9] proposed a log C-means clustering algorithm
(LFCM) to form clusters based on driving style. They then
used the Ant Colony algorithm to calculate the shortest
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path. Sun et al. [10] proposed a graph-based method to
minimize travel time by either recommending the short-
est path or the best starting time using conventional and
extended Bellman-Ford algorithms. The authors considered
the traffic pattern and its history to recommend the starting
time and reduce the travelling time. Horvath et al. [11] used
a traditional four-step model for dynamically assigning pa-
rameters (traffic and user specifications) in two matrices to
estimate an efficient route. The authors in [12] designed an
Optimized Path Algorithm Based on Reinforcement Learn-
ing (OPABRL) using prior reinforcement learning (RL) and
improvised searched A* algorithm.

2.2 Fog computing and IoT solutions

The authors in [13] presented an IoT-based method for
taking decisions based on the past and present scenario
in a smart city as a connected community. The fog-cloud
architecture helps in load sharing for performing machine
learning operations on resource-constrained FNs [14]. Ah-
mad et al. [15] proposed a route recommender system for
solid garbage collection by waste carrier vehicles. They built
the recommender system by profiling the areas based on
waste production rates. The authors in [16] demonstrated
how IoT systems have the potential to monitor these routes
and vehicles by using off-the-shelf sensors for communicat-
ing with street lights and other stationary units installed
on the street. Xu et al. [17] proposed a crowd evacuation
recommender system in case of disasters. IoT solutions also
help guide and plan optimized routes for data traffic in
applications such as smart homes [18]. The authors in [19]
exploited the features of Q-learning methods to schedule
transmissions to ensure reliable exchange of data. Such
methods play an important role in sending decisions in real-
time IoT environments.

2.3 Synthesis

Route planning based on different parameters and under
various conditions is a well-explored field in the research
community. As discussed in the previous sections, the ex-
isting literature offers efficient route planning solutions.
However, there is a lacuna in the study. The existing solution
techniques typically focus on finding the shortest/optimal
paths between the source and destinations. Such methods
are not suitable for use in the current scenario due to the
threat of the COVID-19 virus. The commuters need to main-
tain social distancing and avoid traveling through zones that
may be part of the optimized routes to reduce exposure.
Further, training machine learning models takes significant
time, which opens the scope for distributed learning in
fog/edge computing platforms.

3 SYSTEM MODEL

In this section, we first present our network architecture. We
then briefly explain the need for RL in lieu of other solution
techniques for determining the road routes in COVID-19
situations. We then present our formulations and algorithms
towards training and deployment of S-Nav.

Figure 2: Network architecture for the S-Nav system.

3.1 Network architecture

We consider an IoT-based network architecture, as shown
in Fig. 2 for realising S-Nav. In this work, we consider a
scenario with a remote cloud server C and a set of FNs
F = {f1, f2, ..., fn}. The cloud is responsible for computing
the paths for a wide area (cities/states) and for areas that
are devoid of FNs. On the other hand, we propose the use
of location-aware FNs for S-Nav. In other words, for a set
of geographical regions G = {g1, g2, ..., gm} each of the FNs
is responsible for their own geographical area. This strategy
reduces the size of the map on the FNs, which is suitable
for the resource-constrained nature of the FNs. It may be
noted that we consider networking devices such as switches,
routers, and others for assuming the role of FNs. Although
the communication among the FNs for information sharing
is beyond the scope of this work, we envision that each
geographical region is associated with only one fog node,
i.e., for fpq to be the pth FN associated with qth geographical
region,

∑
q fpq ≤ 1. As C tries to train for a large region, and

the FNs feed granular details with respect to the hotspots,
the separation of the tasks among the fog and cloud helps
distribute the load along with easy data management. Fur-
ther, once the model is ready, the FNs respond to requests
from the set of users/commuters U = {u1, u2, ...uk}. Since
the FNs are closer to the users, the delay in obtaining the
recommended routes is minuscule [20]. It may be noted that
the red zones are converted to orange when there are no
COVID-19 positive cases for 14 continuous days, and its
conversion to the green zone needs at least 28 continuous
days with no positive reports. In this work, we depend on
some user intervention in this regard and allow only con-
cerned authorities to update the databases. In the extension
of this work, we plan to incorporate web crawlers to update
the databases from reliable sites periodically.
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3.2 The Motivation of Using Reinforcement Learning

On the one hand, as the COVID-19 virus is spreading
rapidly, concerned authorities are successful in limiting the
spread on the other. Due to this hand-off, the status of the
hotspots keeps changing at specific intervals. The criteria
for road routes need to change per the changing states of
the hotspots. In such scenarios, RL-based solutions give us
the scope for imposing dynamic penalties for the hotspots.
The model then trains based on the updated penalties before
recommending the safe paths with the motive to maximize
the rewards. RL also allows the model to learn from the ac-
tions based on the outcome of past decisions. The feedback
loop plays a significant role in avoiding past mistakes and
making smart decisions. Further, RL allows straightforward
updates in the system as the state of the zones change. Due
to these salient features, we use RL, particularly Q-learning,
for realizing S-Nav. Q-learning is an off-policy value-based
RL technique that does not depend on the conventional
greedy methods and estimates its reward for the future. In
summary, because of the feedback loop, Q-learning, changing
status of the hotspots, and non-greedy selection technique,
we use RL instead of other possible solution techniques.
Another attractive feature of using reinforcement learning is
that it is an online learning approach, which allows training
the model across devices in parts.

3.3 Road network and graph generation

In this section, we explain the graph generation and then
navigation with respect to the network architecture ex-
plained in Section 3.1. For a geographic region (small/large),
we extract the road information and form a road network
graph. We represent it as G =< V,E >, such that V is
the set of vertices representing the intersection points, and
E is the set of edges representing the roads. It may be
noted that the creation of the network map from the maps
is beyond the scope of this work, and we rely on publicly
available datasets for the same. For the set of vertices V =
{v1, v2, ..., va} and corresponding edgesE = {e1, e2, ..., eb},
the final vertex-edge pair representing the road route is
< V ∗, E∗ >⊆< V,E >. The < V ∗, E∗ > pair is user-centric
as it depends on the commuter’s source and destination.
As mentioned in Section 3.1, C is responsible for G that
spans over a large area, while the FNs focus on only on
its region of interest (ROI)/sector. In case the source and the
destination belong to different ROIs, we execute the route-
finding routine on C. In the future, we plan to extend this
work by enabling the FNs to communicate with one another
and perform virtual map stitching. We believe processing in
the FNs will incur less delay as compared to C.

3.4 Hotspot category-aware rewards

As explained in Section 3.3, we obtain G from the maps
to generate a reward-matrix and process it on C or F to
produce the safety-aware path (PS−Nav). For G =< V,E >,
we represent the length of the ith edge as edisti = li and the
set of all distances as L = {l1, l2, ..., lc}. We represent the
maximum, minimum, and average of the distances in L as

lmax, lmin, and lavg , respectively. Since it is challenging to
create zones in < V,E >, we introduce a containment factor
α to represent the category of the containment zone that a
road passes through or belongs to. Thus, for a road/edge ei,
its containment factor is αi and the set of all containment
factors is α = {α1, α2, α3, ...., αb}, such that |E| = |α|. For
instance, the government has divided the regions into zones
according to three categories: 1) Red zone (αr): regions
that have a large number of COVID-19 positive cases, 2)
Orange zone (αo): regions with a relatively fewer number
of COVID-19 cases compared to the red zones, and 3) Green
zone (αg): regions with no reported COVID-19 cases. In this
work, we assign low α values to edges belonging to zones
with lower severity, implying that αg < αo < αr . In context
of the mentioned parameters, we formulate the reward of
a path based on two major components – 1) path length
or distance and 2) intensity of containment. For rei as the
reward associated with ei, we calculate it as:

rei =
lmax

1 + e
lmin−li

lavg

× αei (1)

where re1 > re2 when l1 < l2 and αe1 = αe2 (2)
and re1 > re2 when l1 = l2 and αe1 < αe2 (3)

There may be situations where traversal through a hotspot
is unavoidable. We ensure minimum passage through them
by accounting the lx ∈ L values in addition to α to reduce
the risk of contracting the virus. In equation 2, in case
α1 = α2, we assign higher rewards for edges with smaller
distances. For instance, rei is higher for min(l1, l2). In case
l1 = l2, rei is higher for those with lower containment factor
(min(α1, α2) in equation 3). We create the reward-matrix
R of size a × a, such that the indices of the columns and
rows represent the set V . Mathematically, the entries of R
corresponding to the eij connecting vi and vj is:

R[vi, vj ] =
{
rei , if ∃eij 6= 0

-1, otherwise.
(4)

The first condition in equation 4 assigns positive values to
the matrix elements in case there exists an edge connecting
the vertices vi and vj . In case there is no edge connecting
them, we assign a negative value, specifically -1 (second
condition).

3.5 S-Nav: Safety-aware smart navigation

S-Nav operates in two steps. First, we train the devices in-
volved in finding PS−Nav with respect to the corresponding
G and then calculate PS−Nav . For the training phase, we
create a Q-matrix (Q) on obtaining R, which acts as the
memory for the model. We initialize the entries by setting
them all to be 0. We use rowi to denote the set of entries
in ith row of Q and maxrowi

to be the maximum of rowi.
Also, we use cs to denote the current state, and ns for the
next state from cs. A(cs,ns) is the action of moving from cs
to ns. We update the reward entries for A(cs,ns) in the Q as:

Q[cs, ns] = R[cs, ns] + γ.maxrowi (5)
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where, γ is the learning parameter. For gamma values close
to 0, the model considers immediate reward for its actions.
When gamma is close to 1, the model considers cumulative
reward for its actions and chooses to delay it if necessary.
The reward entries in the Q matrix may be represented as
rA(cs,ns)

= Q[cs, ns]. Finally, the S-Nav system calculates
PS−Nav by maximizing the sum of the Q-matrix rewards.
Mathematically, our objective function is:

max

D,D∑
i=S,j=maxi

rA(i,j)
(6)

where, i represents the current state and j is the best next
state from i. The state j is found by traversing through all
the entries at the ith row of the Q-matrix. Mathematically,
Q[i,maxi] = max(Q[i, vk]) where vkεV .

In summary, S-Nav operates on the roads from G and the
corresponding R matrix. The rewards for each edge in
equation 1 takes care of assigning higher rewards to low
containment factors and distances. The low containment
factors ensure taking routes through low-risk regions. The
distance parameter ensures minimal traversal through the
containment zones if there is no safer alternative. Upon
training the Q matrix based on these rewards, S-Nav con-
siders the path that renders the maximum reward according
to equation 6.
Lemma 1. The Sigmoid function is concave for values greater
than zero.
Lemma 2. The sum of two concave functions is a concave
function.

Since the Lemmas 1 and 2 are straightforward and based
on basic mathematical principles, we refrain from providing
proofs in this paper and maintain simplicity.
Theorem 3. The reward associated with the selection of the edges
in the road network map for reducing the passage through the
categorical COVID-19 hotspots represented by equation 6 is a
concave function.

Proof. The equation 6 is the summation of sigmoid functions
in equation 1. Since the parameters in the reward function
for the cells in the matrices are dependent on the distances
between two vertices, the parameters for the sigmoid func-
tion are greater than zero. According to Lemma 1, equation
1 is a concave function, implying that equation 6 is a sum
of concave functions. Using Lemma 2, we prove that the
proposed objective function for S-Nav is concave.

On training the model, we calculate PS−Nav starting from
source S and move to the next step. We represent the
next intermediate steps as Sint

Nind
, where ind represents the

hop/step count in the matrix. It may be noted that ind is
not the distance but the count of number of the number of
vertices involved while calculating PS−Nav . The selection of
Sint
Nind

is based on the rewards on taking actionA. The model
performs the set of actions while maximising according to
equation 6 until it encounters the destination D during Q
exploration. We represent PS−Nav as < V ∗, E∗ >, which
contains the vertices and edges of the recommended path by
the S-Nav model. Algorithm 1 represents the steps involved

Algorithm 1: S-Nav - Training
Input: epochs = iterations ; // Number of iterations

set according to number of nodes

Result: All the possible paths are discovered and
knowledge of the best path is attained by the
trail and error approach.

for epochs do
Select cs randomly from Q-matrix;
Select ns from available states for cs;
Update the Q[cs, ns];
// According to Section 3.5

end

Algorithm 2: S-Nav - Determination of PS−Nav

Input: Current step (Scurr) = S ;
Result: PS−Nav from S to D
Initialization: PS−Nav = [Scurr] ; // Initial point

of the path is the source

while current step != Destination do
add the index(s) of maxrow in a next index;
if len (Sint

Nind+1
) ≥2 then

choose Sint
Nind+1

randomly from the list;
else

Sint
Nind

= Sint
Nind+1

;
end
Psafer .append(Sint

Nind
);

Scurr = Sint
Nind

;
// The next best state is found and added to

PS−Nav

end

in training S-Nav and algorithm 2 represents the steps for
determining the PS−Nav path.
Theorem 4. The time complexity in determination of the safety-
aware path in a geographic region by S-Nav is O(N2), where N
is the number of nodes.

Proof. S-Nav operates by maximizing equation 6. Finding
j needs O(N) time because we iterate over all the entries
belonging to the current row (ith) and find the value of
maxi = j . For N number of nodes in the map/graph
(considering the worst case where S = 1, D = N , edges
exists only between i and i + 1(i = {1, 2, 3....N − 1} and
maxi = i + 1), S-Nav needs to iterate through N steps.
Thus, the maximum reward is:

Rmax =

N,N∑
i=1,j=maxi

Q[i, j] =
N−1∑
i=1

Q[i, i+ 1] +Q[N,N ]

The total time required in this case is O(N ×
time for finding j) = O(N ×N) = O(N2)

It may be noted that excluding roads/edges belonging to the
COVID-19 hotspots may be a possible solution to avoid trav-
eling through risky areas. However, there may be situations
when no alternate route exists from a source to its destina-
tion. In such cases, on imposing the mentioned constraint,
the S-Nav system will not recommend any route. Thus,
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Figure 3: Time taken by FN and cloud devices for training
the S-Nav system.

we refrain from applying it as S-Nav ensures no passage
through the hotspots during the presence of alternate routes
to the destination. Additionally, in cases when all alternate
routes pass through hotspots, the zone-based rewards help
in ensuring minimal passage through them.

4 EXPERIMENTAL SETUP

We performed a series of experiments to evaluate the per-
formance of S-Nav. Towards this, we used the road-network
dataset exported from OpenStreetMap [21] and processed
the data in a device with 1.8 GHz Dual-Core Intel Core i5
processor. We used different sets of longitudes and latitudes
to vary the number of nodes and edges. We used a random
distribution process to allocate the categorical hotspot zones
in the network map. We used Google Colab to assume the
role of cloud and the device mentioned earlier as fog nodes.
It may be noted that the FNs may be further resource-
constrained. However, we did not scale our results and
presented them in its original form. While training the
model for S-Nav, we fix the number of epochs/iterations
sufficiently high to ensure that the model accurately ex-
plores the environment. We draw inferences, and safety-
aware paths after the training is complete.

5 RESULTS

In this section, we discuss our observations during the
experiments for evaluating the proposed S-Nav system.

5.1 S-Nav training time

We calculate the delay incurred while training and testing S-
Nav and present the results separately to get better insights.
Fig. 3 illustrates the time necessary for training the S-Nav
model in both cloud and fog devices. We vary the number
of nodes by ranging it across 50− 250 nodes and record the
time in each case. We observe that S-Nav training time at
the FN is higher than that of the cloud by more than 50%.
However, as the number of nodes increases, both the devices
demonstrate similar delays. We attribute the lower delays
to the superior CPU clock cycles and configurations of the
cloud. On the other hand, the demonstration of similar
delays as we increase the number of nodes is unlikely to

(a) Fog node device. (b) Cloud device.

Figure 4: Time taken to calculate the S-Nav path by FN and
cloud devices after training the S-Nav model.

Figure 5: Reward values while training the S-Nav model
with varying number of nodes in the map.

occur in ideal conditions. Intuitively, we justify this phe-
nomenon to the feature of context switching among multiple
applications that execute on the cloud. Additionally, as we
execute the code on Google Colab, we also attribute the
additional delay to network latencies.

Implication: The delays give the impression of biasing the
training at the cloud and then transfer the weights and
matrices to the FNs. As the S-Nav system is a Q-based RL
model, it may be easily trained in parts by the FNs with
much lower latencies. This is the reason for adopting the
network architecture in Section 3.1 for S-Nav.

5.2 S-Nav testing time

We calculate the time taken by the FN and cloud devices
for finding the path from the S-Nav model after training
and present the results in Fig. 4. Interestingly, in the instant
of performing our experiment, we observe in Fig. 4a that
the FNs need less time to determine the path as compared
to the cloud in Fig. 4b. One of the possible reasons for
this is that the cloud servers are preoccupied with serving
other requests. The response time is larger than the actual
execution time, which dominates the overall delay.

Implication: Irrespective of the reasons for demonstrating
higher pathfinding delays in the cloud server, we observe
that the FNs offer comparative results. Such minuscule
delays give us the motivation and justification towards
deploying S-Nav in the FNs.
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Table 1: Comparison of paths recommended by S-Nav (SN)
and Shortest Path (SP) algorithm (Dijkstra’s) in terms of
travel distances and passage through the demarcated cat-
egorical COVID-19 hotspots.

Red Zone Orange Zone Green Zone Extra
LengthSN SP SN SP SN SP

0 0 17.73% 46.21% 82.27% 53.79% 17.03%
1.44% 65% 0 0 98.56% 35% 8.80%
44.57% 77.04% 0 0 55.43% 22.96% 17.42%
0 0 0 35.22% 100% 64.78% 17.16%
22.92% 26.39% 44.95% 61.07% 32.14% 12.54% 15.15%
21.39% 53.12% 0 0 78.61% 46.88% 3.94%
83.51% 83.51% 0 0 16.49% 16.49% 0.00%

(a) Road-network with de-
marcated roads (color-coded).

(b) Paths between Source S
and Destination D.

Figure 6: Comparison of paths by S-Nav and shortest path
algorithm in presence of COVID-19 hotspots

5.3 S-Nav rewards

We keep track of the rewards while training the S-Nav
model and present the results in Fig. 5. We vary the num-
ber of nodes on the map and start training. We observe
convergence in each case. Additionally, as we increase the
number of nodes, the value of the rewards keep increasing.
Interestingly, we observe that the number of iterations for
attaining maximum rewards is proportional to the number
of nodes. We measure the reward values by the sum of
all the entries in the Q-matrix of the model. We notice the
jumps and downs in Fig. 5 as the S-Nav model’s training
phase uses the trial and error approach. It learns from its
mistakes and gains knowledge of the safer path. So, when
the number of nodes is more, the number of edges is usually
more. The model needs to explore all the possibilities and
requires more number of iterations.

Implication: With the results in Fig. 5, we safely comment that
the S-Nav system reaches convergence under all conditions.
The S-Nav system offers correct solutions with minimum
probabilities of making an error. In summary, the S-Nav
system is reliable. It always fetches safety-aware paths ir-
respective of the number of nodes in the map.

5.4 Comparison of S-Nav with conventional techniques

Commonly available applications such as Google Maps rely
on Dijkstra’s algorithm and recommend shortest paths
based on parameters explained in Section 1.1. Without loss
of generality, we refer to the available methods as shortest
path algorithms. In this section, we present a detailed anal-
ysis of a comparison between the paths/routes produced

(a) R matrix. (b) Q matrix.

Figure 7: R and Q matrices while training the S-Nav system.

by Dijkstra’s algorithm (Shortest path) and the proposed S-
Nav model. As an example, we consider a road-network of
Kolkata (north, east, south, west = 22.5862, 88.3785, 22.5764,
88.3645). We assign contamination (hotspot) intensities to
different areas of the dataset, as shown in Fig. 6a (color
coded). Let S be the source, and D be the destination
in the dataset. We execute both S-Nav and shortest path
models and present the results in Fig. 6b. We observe that
the S-Nav path (green) avoids the red zones/contamination
areas and recommends passage through the green zones.
On the other hand, the shortest path (pink) takes the route
through the hotspots, which increases the commuter’s threat
of contracting the virus.

Although the S-Nav model finds the safest route possible, it
increases the travel distance, implying a trade-off between
safety and distance. On setting arbitrary source-destination
pairs, we study the increase in travel distance and present
our observations in Table 1. We observe higher travel dis-
tances by S-Nav in all cases. On average, we see almost 15%
additional travel distance in the case of S-Nav as compared
to the shortest path. However, we analyze the travel dis-
tance through hotspots (red/orange/green) and present the
percentage with respect to each case’s total recommended
path. In both red and orange zones, we observe that S-
Nav takes paths as small as 2% (15 m). The shortest path
algorithm takes 65% on the same source-destination pair. In
the case of green zones, we observe that the S-Nav model
travels mostly through them compared to the shortest path
model. In some unavoidable conditions like the one in the
last row of Table 1, the S-Nav path is the same as the shortest
path. We attribute that such a similar route decision occurs
due to the absence of better alternative routes. In cases when
alternate routes are available, we observe 100% passage
through the green zones.

Implication: We safely comment that the S-Nav model en-
sures safe to travel in all source-destination pairs. However,
it increases the travel distance, which is not a concerning
factor as it reduces the risk of contracting the virus. In case
the users seek shorter routes, we plan to modify S-Nav in
our extended work to provide alternate paths (if any) with
minimal thoroughfare through the hotspots.

5.5 S-Nav confusion matrix

We consider a map with 22 nodes and 55 edges. We
demarcate some areas as red and orange zones to show
the confusion matrices. We set the rewards according to
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equation 1 and populate the R matrix of size 22 × 22. R
is a symmetric matrix as we consider an undirected map.
The destination node has the highest reward, and hence we
observe dark patches in Fig. 7a. The lightest shade, which
covers the majority of the matrix represents non-existing
edges among the nodes. The other shades represent the
rewards for each edge. The S-Nav system trains the model
and populates the Q matrix in Fig. 7b. The patch with the
darkest shade in the row represents the best possible next-
state from the current state (row index). The values of the
Q-matrix updates according to the Bellman equation.

Implication: The S-Nav system correctly updates its matri-
ces, which elevates its reliability, implying that the routes
recommended by S-Nav are correct and safe.

6 CONCLUSION

In this paper, we proposed and developed a reinforcement
learning-based model (S-Nav) which recommends safety-
aware road routes/paths. The recommended path by S-Nav
avoids traveling demarcated categorical hotspots, ensuring
safety, and reducing exposure risk for the commuters. To fa-
cilitate real-time results, we proposed an IoT-based network
architecture by incorporating the cloud and fog computing
paradigms. The fog computing platform allows partitioning
of the maps and operations on small portions rather than the
entire map, which is time-consuming. We also performed
extensive experiments on S-Nav using real datasets from
OpenStreetMap and presented results. We also performed
a detailed comparative analysis of the recommended paths
by S-Nav with Dijkstra’s algorithm (shortest path). We ob-
served a 15% increase in travel distances by S-Nav. How-
ever, its passage through the hotspots is minuscule.

In the future, we plan to extend this work by considering
additional factors such as real-time traffic, multi-lane road
system, and speed control. Further, we plan to incorpo-
rate user protection status by considering full, partial, or
unprotected based on the inbound vehicle. We also plan
to address the issue of source and destination being in
geographical areas served by different FNs. Further, we plan
to incorporate disconnected graphs and divide them into
various relevant components.
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