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Abstract—In this paper, we develop and analyze a smart
digital stethoscope – SkopEdge – to provide reliable remote
e-health monitoring with a minimum delay while enhancing
overall network performance. SkopEdge initially records the
heart sounds from individuals and then senses the quality of the
network. Depending on the network traffic, SkopEdge converts
the audio clip into an appropriate format before transferring
it to remote locations for estimating the number of heartbeats
and storage. Towards this, we formulate the link quality along
with SkopEdge’s current configuration as a Markov Decision
Process (MDP) with actions as conversion format selection.
The remote server then returns the result, which SkopEdge
displays on its screen. Real-time implementations show that
SkopEdge works efficiently in all network conditions. Further,
audio conversions usually degrade the quality of sound, but
our proposed system does not change its primary components.
Although SkopEdge exhibits an increase in energy consumption
by 79% while converting to lower-quality formats, it also reduces
the energy consumption by 99% while transmitting the same,
which subsequently results in energy savings. Further, we provide
an analysis of the estimated heartbeats in an audio clip by
SkopEdge.

Index Terms—Digital stethoscope, Internet of Things, Markov
decision process, network traffic, auscultation sounds, Edge
Processing.

I. INTRODUCTION

The proliferation of smart ubiquitous devices has improved
the quality of healthcare by bridging the gap between IoT and
e-Health monitoring systems. However, they exhaust network
resources, which often leads to unreliable transmissions. Sug-
gestive healthcare devices use the same standard ISM radio
bands for data transmission. Researchers have made significant
efforts to deliver reliable transmission of health data over
such congested networks [1]. However, healthcare systems
working with multimedia data suffer from over buffering, slow
servers, video/audio latency, packet drops, among others, while
delivering at remote locations. Towards this, we aim to develop
a network traffic-aware e-health device that helps in regular
monitoring of the heart in near real-time.

In this work, we design a smart digital stethoscope (SkopE-
dge) for remotely monitoring an individual’s heart sounds.
Skop comes from the Greek equivalent of an instrument for
viewing, and Edge comes from Edge Computing. Fig. 1 illus-
trates how the SkopEdge system works. SkopEdge consists of
four phases – record and filter, link analysis and conversion

Figure 1: Overview of SkopEdge’s system architecture

(lossy/lossless), send converted data and receive reports. In
the first phase, an individual records his/her heartbeats, which
passes through a band-pass filter for removing noise. In the
second phase, for reliable transmission of the captured sound,
SkopEdge decides the format of the audio clips for sending
based on the quality of the network. Such conversion of audio
formats helps in reducing the size of the file, which minimizes
the delay and makes the system near real-time and also saves
energy. In the third phase, SkopEdge sends the converted
data to a remote server for analysis and report generation.
Finally, SkopEdge displays the number of heartbeats returned
by the server on its screen. The results and audio samples
of the individuals are stored at the remote server for review
by concerned doctors. In case there is no network, SkopEdge
locally computes the number of heartbeats. We also develop an
Android application for computing the number of heartbeats
on a smartphone. Our major contributions in this work include
– 1) development of a traffic-aware smart digital stethoscope
(SkopEdge), which changes audio formats depending on the
network quality, 2) formulation of a Markov Decision Process
(MDP) for stochastically deciding the transmission format,
and 3) composition of routines that estimate the number of
heartbeats from the recorded audio clips.

A. Traffic-Aware SkopEdge for Healthcare
There has been significant efforts by researchers towards
reducing network traffic in IoT environments by developing
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new schemes for data offloading. To reduce latencies and
network traffic, solutions such as caching, based on various
parameters such as social interest, mobility, traffic redundancy,
and others are common in literature [2]. However, healthcare
data do not depend on repetition. Inferences from generated
data at every instant are of paramount importance. In summary,
with the increasing demand for e-health solutions, traffic-
aware healthcare devices (SkopEdge and others) facilitate in
delivering physiological data without fail.

B. Motivation
Suggestive healthcare devices mandate reliable transmission
of data over the network in near real-time. However, with
the increasing number of devices, the network gets congested.
Regular checkups are of paramount importance for maintain-
ing a healthy body, and analysis of auscultation sounds of
the heart is standard preliminary practice. However, devices
dealing with multimedia in such congested network traffic
usually face difficulty while sending data to remote locations.
This acts as a motivation for designing SkopEdge as a remote
e-health monitoring device that efficiently uses network and
energy resources while delivering auscultation sounds along
with the number of heartbeats in near real-time.

II. RELATED WORK

In this section, we initially present how researchers are the
bridging of the gap between e-Health and the Internet of
Things (IoT). We then discuss some of the existing approaches
towards the development of smart stethoscopes.

Zhu et al. [3] highlighted the challenges faced by the
Ambient Assisted Living (AAL) research community while
developing various deployable systems for sensing, processing,
and sending results to the end-users. For a seamless integration
of diverse e-Health monitoring technologies, applications, and
services, Benharref and Serhani [4] proposed a framework
consisting of a Service Oriented Architecture (SOA) and the
cloud. The framework contemplates the random network dis-
connections along with the resource-constrained nature of the
mobile devices for smooth collection and communication of
vital data from wearable biosensors. Apart from digital stetho-
scopes, Lee et al. [5] proposed a real-time data compression
scheme for a patient’s electrocardiogram (ECG) data as well as
an algorithm for its transmission over the network. Researchers
are developing many other e-health devices towards which
Guo et al. [6] proposed and developed a software-based
platform for facilitating interactivities among them.

Elhilali and West [7] developed a smart stethoscope for
detecting pneumonia. The authors devised algorithms for the
device that incorporates noise cancellation on the captured
sound and then uses Artificial Intelligence (AI) techniques
for differentiating abnormal behavior from the normal ones.
Similarly, Perron et al. [8] developed a Cardio-Pulmonary
Stethoscope (CPS) for measuring and analyzing fluid in the
lungs. A mobile device receives the computed results for
remote monitoring. The authors also presented an evaluation
of the accuracy achieved by the developed CPS on volunteers
(patients) [9]. Chen et al. [10] proposed a deep neural network

Figure 2: Block diagram of SkopEdge system

(DNN) method for identifying S1 and S2 sounds on captured
heart signals. Pan et al. [11] assessed the Korotkoff sounds
captured from a stethoscope while measuring BP using Con-
volutional Neural Network (CNN).

Synthesis: Although data offloading is a matured field
of study, we observe that there exists a lacuna in how a
device with non repetitive data behaves in congested networks.
Existing schemes limit themselves to sending the data in its
original form. However, converting the data format according
to the network quality delivers the results in near real-time,
which saves considerable energy during transmission, leading
to sustainable IoT and Edge-based e-health systems.

III. SYSTEM MODEL

In this section, we briefly discuss our system, its architecture,
concepts of MDP, and how SkopEdge utilizes them to decide
and take actions under different network conditions.

A. SkopEdge System
SkopEdge consists of an auxiliary cable with a Microelec-
tromechanical System (MEMS) microphone connected on the
diaphragm’s end and the other end attached to a processing
board. In our work, we use a Raspberry Pi as the processor
board since SkopEdge requires Wi-Fi to send data to the
remote server for storage and processing. SkopEdge also has
an Organic Light-Emitting Diode (OLED) screen connected
to the processor board for displaying notifications and results.
The resolution of our captured audio has 216 discrete levels
as the Raspberry Pi represents each sample using 16 bits
(bits per sample, b). The digital value, Ddgt

t corresponding
to the analog value captured at time instant t is Ddgt

t =
(ADCres/V

system
max )×V msrd

t where, ADCres is the resolution
of the ADC sound card, V system

max is the voltage obtained from
the USB port (generally 5V ), and V msrd

t is the acquired
analog signal voltage. The 16 bit resolution enables us to
record with a sampling rate (S) of 44100Hz, which helps
in capturing detailed auscultation sounds. Thus, the bit rate
Brf of the recorded file (f) is calculated as Brf = b×S×nch
where, nch is the number of channels. Finally, the size of the
recorded file Fsize

f (in Bytes) is: Fsize
f = (Brf × trect )/8

B. SkopEdge System Architecture
As outlined in Fig. 1, SkopEdge records auscultation sounds
from an individual/subject and sends the data to a cloud server.
Since the heart sounds have a specific frequency range, we
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do not need to analyze the whole spectrum. Instead, we pass
the recorded sound through a Butterworth bandpass filter and
extract the relevant range. Additionally, to avoid unreliable
data transmission, SkopEdge checks its residual energy and
the link quality, which acts as inputs to an MDP. The decision
from MDP directs the board to convert the file into one of
the formats (.wav, .flac, .mp3, and .txt) or process locally. On
the server-side, when the data is received, it filters the relevant
spectrum and then estimates the number of beats, and sends the
result back to the processor board. For counting the number of
peaks, we compute the baseline and centroid of the audio clip.
We then find the peaks in the specified data using the Gaussian

fitting function, f(x) = Ae−
(x−b)2

2c2 for constants A,b, and
non zero c. We then enhance our resolution by again using
Gaussian fitting and further run a centroid computation routine
on neighboring peaks. This time, we perform a Lorentzian
fitting (g(x) = 1

1+x2 ) to ensure precise detection of the peaks
and finally scale the result. Concerned doctors can access the
recorded sounds and results from the server whenever needed.
In the case of poor network quality, the processor board runs
the same routine as the server. SkopEdge only sends the peak
locations to the server in the form of an array in a .txt file.
SkopEdge follows Algorithm 1 for choosing the audio formats
and Algorithm 2 for estimating the number of heartbeats.

Algorithm 1: SkopEdge Decision
Result: No. of heartbeats
Input: ψ, Eres

t ;
D: MDP decision to convert or process locally;
E : Conversion format;
if D = convert then

convert to E ;
else

Process locally;
Estimate number of heartbeats (Run Algorithm 2);

end
Wait for result;
Display result;

Algorithm 2: Estimate Number of Heartbeats
Result: No. of heartbeats
Input: Receive data from SkopEdge;
if Input is audio file then

Filter audio;
Run peak detection routine;
Save file and result;
Send result back to SkopEdge;

else
Save received data;

end

C. Audio Conversions

Although we use command-line applications for converting
the audio formats in SkopEdge, we briefly explain the audio
conversion techniques. The .wav is an uncompressed audio
format that needs a sizeable space. The .flac format stands for
lossless conversion with almost 50% reduction in size than
the original .wav. It identifies redundant data and replaces it
with shorter unique symbols. However, due to the prediction
of redundant data, the reconversion of .flac files to .wav with
non-repeating rhythms renders inaccurate audio. However, the
.mp3 is a lossy audio format that relies on perceptual noise
shaping, implying that it removes parts from the audio file
that are relatively silent. As conversion to .mp3 format drops
significant data, it reduces file size as well as its quality.

D. Markov Decision Process for SkopEdge decisions

In this work, we consider only one device and demonstrate
its characteristics. We plan to deploy a network of multiple
SkopEdge devices and study their behaviors in the future.
Currently, we assume that the network is already in use by
other user devices and applications and we represent its quality
as ψ. Let S represent our SkopEdge, and the link available
for it be L. The different terminologies considered in this
work are: Available Bandwidth (BW a

t ): The rate at which
SkopEdge transmits data. We calculate this using the Shannon
Capacity Formula BW a

t = BW totlog2(1+S(t)/N(t)), where
BW tot is the total bandwidth of the channel, S(t) is the
average received signal power at time instant t, and N(t)
is average power of noise and interference in the channel at
time instant t. Transmission Time (ttranst ): The time needed
for SkopEdge to push data into the channel at time instant
t. We calculate this as the ratio of the size of data to be
sent divided by the available bandwidth at that time instant.
Mathematically, ttranst =

P size
t

BWa
t

where, P size
t is size of data to

be sent at time instant t and BW a
t is the available bandwidth

(BW a
t ) at time instant t. Propagation Time (tpropt ): The

time needed by a packet to reach the destination at time
instant t. We compute this by performing a ping test from
our processor board. We calculate tpropt from the parameter
time in its output represented as tpingt for P size

pingBytes of data
as: tpropt = (tpropt /P size

ping) × P size
t × npackets where P size

t

is the size of each packet at time instant t and npackets is
the number of packets to be sent. Nodal Processing Delay
(tnodet ): The time needed by the processor board to record
the auscultation sounds (trect ) and process the data in a file
( including conversion and sending) at time instant t. We
calculate this as the ratio of the number of cycles required by
the file divided by the computation power (cycles per second)
of the board. Mathematically, tnodet = trect +(P cycles

f /Ccylces
t )

where P cycles
f is the number of cycles needed by a file

f and Ccylces
t is the processing power of the board. Total

Delay (ttott ): The overall time needed by a packet to get
delivered at the destination at time instant t. Mathematically,
ttott = ttranst + tpropt + tnodet . Link Quality (ψt): We define
(ψt) as a function of ttranst and tpropt for successful delivery
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(a) Format: .wav (b) Format: flac (c) Format: mp3

Figure 3: Continuous wavelet transforms for different formats after conversion

of SkopEdge’s packets at time instant t. We calculate this as
a weighted average tavgt =

w1t
trans
t +w2t

prop
t

w1+w2
and check its

deviation from ψt = 1 − (1/tavgt ). Residual Energy (Eres
t+1):

The Residual Energy after performing the operations at at
time instant t, Eres

t+1 is the processor board’s remaining energy
after performing the operations of recording the auscultation
sound, converting and sending the recorded file, and receiv-
ing the result. Mathematically, Eres

t+1 = Eres
t − (Erec

t +
Enode

t + Erecv
t + Eidle

t ) such that Ex
t = Ex

req × txt where
x = [rec, node, recv, idle].

To optimize the usage of Energy, we design an MDP to
take decisions on appropriate actions, such that a state opts
for multiple actions but not at the same time. We use two
tuples for defining our states. They are defined by link quality
and Residual Energy, which is represented as < ψt, E

res
t >.

The actions in SkopEdge is the selection of the format in
which the file is to be sent. Thus, our Markov chain is a
sequence of states S1,S2,S3, ...,Sn abiding by the property
of being memoryless. This is satisfied by the Markov property
which is mathematically represented as P (Sn+1 = x|S1 =
x1,S2 = x2, ...,Sn = xn) = P (Sn+1 = x|Sn = xn), for
n = 0, 1, 2, ..., and so on [12]. Similarly, the m-step transition
probabilities is defined as Pm

ij = P (Sn+m = j|Sn = i).
In case m is very large, we define a limiting probability
independent of the initial state (i) [13]. This is also termed as
steady-state probability which is mathematically represented
as: limx→∞ Pm

ij = ηj > 0 where j is state at which the system
is expected to be in after large number of transitions, ηj is the
steady-state probability of state j such that ηj =

∑m
i=0 ηiPij

and
∑m

j=0 ηj = 1.
With respect to the model defined above, the State-Decision

Probability Matrix (At,ik), we compute the State-Decision
Cost Matrix (δt,ik), and State Transition Probability Matrix
(Pt,ik) where k is the decision taken. Based on these matrices,
SkopEdge takes decisions while maximizing Eres

t .

IV. PERFORMANCE EVALUATION

In this section, we discuss the results exhibited by SkopEdge.
We first describe the metrics used for evaluation and then
elaborate on the results.

A. Metrics
In order to analyze the performance of SkopEdge, we consider
the following metrics: 1) File Formats: SkopEdge initially

records the audio clips in .wav format, which is of high
resolution and size. On the other hand, the .flac is a lossless
format very similar to .mp3, which is lossy. We analyze the
variations in the continuous wavelet transform (CWT) in the
case of each of the formats. 2) File Size: With each of the
formats mentioned above and their resolutions, we analyze
their sizes. 3) Traffic Pattern: Since SkopEdge is mobile, we
analyze the various network condition throughout the day
and at different locations. Decisions in the MDP are made
based on these conditions and energy. 4) Energy dissipated for
conversion: SkopEdge initially records the auscultation sounds
in a high-quality audio format, and based on the network
quality, it converts the audio clip into a format with lower
resolution. Since the conversion technique varies with the
determined format, we analyze the energy required during this
process. 5) Transmission Energy: We analyze the energy spent
by SkopEdge while sending data to the server.

B. Results & Discussion

In this section, we briefly discuss about the results obtained
as a consequence of developing SkopEdge.

File Formats: As mentioned earlier, SkopEdge converts its
audio files into both lossless and lossy formats according to the
conditions of the network traffic. In Fig. 3, we assess the CWT
for an audio clip in different formats. The CWT for the original
format (.wav) in Fig. [ref wave] clearly shows the heartbeats
(peaks) around 87.5 Hz center frequency. We observe similar
CWT results in the case of both .flac and .mp3 formats in
Figs. 3(b) and 3(c) with no change in the amplitude. We also
observe that the conversions do not introduce undesired noise
into the audio clips. We can thus safely conclude that although
the conversions affect the quality of sound, they do not affect
our results in estimating the number of heartbeats.

File Size: Fig. 4 depicts the sizes of the files generated after
conversion. We observe that .flac and .mp3 are much smaller
in size than that of the original recorded .wav file. While .flac
is a lossless conversion, the resolution is much lower than .wav
files, which is why the size also reduces significantly. The .mp3
is a lossy conversion which discards irrelevant content from
the original audio clip, which results in a further decrease of
file size. The quality of the audio degrades in this case. We
also observe that in case we send only the peak data as a .txt
file, the size is minuscule. SkopEdge does not send any audio
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Figure 4: Size of captured audio in different formats

in the case of .txt. However, we can visualize the number of
beats captured in the remote location.

Heartbeat Sample: In Fig. 5, we show a sample result from
SkopEdge on an audio clip of 10 seconds. The top block is
the original recorded sound. We then obtain the signal in the
second layer by filtering the sound. The plot on the third layer
is the peak detection. We observe that SkopEdge detects 13
beats, which approximately equals 78 beats per minute. The
plot at the bottom represents the deviation in times between
two consecutive captured heartbeats.

Figure 5: Sample heartbeat report of an individual

Network Traffic: We analyze the network condition between
SkopEdge and the remote server from different locations
throughout the day. Fig. 6 shows the time needed for a 64Byte
packet to reach the destination in log(ms) during ping tests.
This plot gives us an idea regarding the times when the
network remains congested. In the figure, we observe heavy
traffic at 22:30 hours.

Total Energy Consumption: The conversion from one
format to the other requires energy in addition to recording and
sending, especially while converting to .txt format. However,
due to fairly good network conditions, we observed that

Figure 6: Network traffic observed throughout the day from
different locations

Figure 7: Total energy consumption by SkopEdge

SkopEdge usually sends the data in .flac format, due to which,
the average energy is in the range of 120 Joules, as shown
in FIg. 7 (dashed line). Although flac does not accurately
compress audio with abrupt changes, we recommend using
.wav for irregular heartbeats. It may be noted that the energy
consumption in the case of .wav is higher than that of .flac
and that in the case of .txt is significantly higher. For further
analysis, we present a breakdown of the energy consumptions.

Conversion Energy: Fig. 8 depicts the energy dissipated
for converting from .wav to other formats. Since .flac files are
lossless files and retain higher quality than .mp3, the energy
required is much lower in Fig. 8(a) as compared to Fig. 8(b). In
case of generating the .txt file, the entire process of analyzing
the captured audio needs to be carried out within SkopEdge.
Thus, it needs much energy, as shown in Fig. 8(c). Thus,
we conclude that SkopEdge consumes more energy during
conversion to lower resolution formats. There occurs as a
tradeoff in order to transfer reliably to remote locations.

Transmission Energy: Fig. 9 depicts the energy needed
for transmitting the files of different formats to a remote
server. We observe from Fig. 4 how the file sizes vary in the
case of each format. Correspondingly, the energy required for
transmitting .wav files, as shown in Fig. 9(a) is maximum and
that in the case of .txt files, as shown in Fig. 9(d) is minimum.
On the other hand, as shown in Fig. 9(b) and Fig. 9(c), energy
needed in case of .flac is lower than .wav but greater than
in case of .mp3. The transmission energy for each format is
intuitively analogous to the size of the files.
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(a) .wav to .flac conversion (b) .wav to .mp3 conversion (c) .wav to conversion

Figure 8: Comparison of energy dissipated for format conversions

(a) Format: ”.wav” (b) Format: ”.flac”

(c) Format: ”.mp3” (d) Format: ”.txt”

Figure 9: Comparison of energy dissipated for transmitting
data to the server

V. CONCLUSION

In this work, we designed and developed a traffic aware
smart digital stethoscope (SkopEdge) as an e-health device for
remotely monitoring the heart. Additionally, with the rising
network congestion due to the increasing number of IoT
devices, we formulated a scheme for SkopEdge, such that it
automatically converts the captured high-resolution audio clips
to simpler formats for generating the results in near real-time.
We also exposed SkopEdge to different network environments
and presented its results with detailed analysis.

In the future, we plan to deploy a network of SkopEdge
devices using IoT protocols and observe its characteristics.
Moreover, no sound is available in the case of .txt, and hence
the results are only visualized. We plan to retransmit the
recorded audio data when the network is available.
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