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Abstract—In this paper, we propose a lightweight blockchain-
inspired framework - Magnum - as a magazine of transfer
learning models in blocks. We propose the storage of these blocks
on proximal fog nodes to simplify access to pre-trained base
models by industrial plants to tune them before deployment.
We design Magnum for B5G-enabled scenarios to reduce the
block transfer time. We formulate a demand-centric distribution
scheme to further reduce search and access time by adopting a
Nonlinear Program model and solving it using the branch and
bound method. Through extensive experiments and comparison
with state-of-the-art solutions, we show that Magnum retains
the accuracy of the models and present its feasibility with a
maximum CPU and memory usage of 80% and 6%, respectively.
Additionally, while Magnum requires a maximum of 10 seconds
for writing models as large as 17 Mb on the blocks, it requires
16 micro-seconds for fetching the same.

Index Terms—Transfer learning, IIoT, I4.0, Distributed learn-
ing, Blockchain, B5G communications, 6G communications, Fog
computing

I. INTRODUCTION

Machine Learning (ML) solutions are typically application-
specific and industries need to develop unique models for
each job/task explicitly. The collection of training data and its
conversion to structured forms and then training the models for
yielding highly accurate results for Industry 4.0 (I4.0) requires
significant time. Moreover, sharing such huge data across
the globe is cumbersome, and storing redundant information
across all branches of an industry causes wastage in memory.
Further, each branch may require multiple models for its
operations. In such cases, Transfer Learning (TFL) methods
pave the way towards one solution for all paradigms and its
interoperability with reduced computing power requirements
and deployment time [1]. However, the reliable transfer of
the base models across geographically distributed branches
is challenging. An easy-to-deploy solution that offers trans-
parency, immutability, distribution, and sequential storage is
beneficial. Although blockchain (BC)-based methods are a
promising solution for the immutable sharing of such models
[2], the steps involved in updating the chain and distribution
of the blocks consist of complex operations. Reducing the
complexity of these operations in a BC and the demand-
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centric distribution of the blocks is necessary for overcoming
the aforementioned issues.

Figure 1: Overview of the proposed Magnum framework.

In this work, we propose and develop a magazine – Magnum
– to store pre-trained TFL models and their corresponding
weights in the form of interconnected blocks across fog nodes.
We propose training the base models at pre-defined locations,
following a centralized infrastructure. We design the blocks
for providing the pre-trained models to the concerned branches
based on their features and requirements. As shown in Fig. 1,
we distribute the magazine of models from the servers across
the network. We make them available to the geographically
separated branches under a particular industry using Fog
Nodes (FNs) in the fog computing layer. As ML training
routines generate sizeable models, we also adopt the upcoming
B5G technology to illustrate the delivery of the blocks on
the factory floor with minimal delay. Moreover, we propose
a demand-based distribution of the blocks to further reduce
search and access times. The demand-based placement of the
blocks facilitates storage close to the requesting branches. The
end devices in these branches acquire the pre-trained models
from the FNs and tune them according to their needs before
deployment.

Example Scenario: Consider an industry that has its branches
spread across the globe. Typically, these distributed branches
may be sub-divided into smaller sets based on their similarity
with respect to its objectives, infrastructure, and resources.
However, the granular parameters differ according to location
and raw materials, mandating the need for minor variations of
the same base ML model. Magnum allows these branches to
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download the models from the corresponding blocks stored in
proximal FNs and tune it according to their needs, avoiding
the overhead of training the same models from scratch. The
demand-centric block distribution and B5G communications
also helps in reducing search and access times.

A. Background

In this section, we briefly describe some of the concepts
necessary to follow this paper.
1) B5G Networks: The current network infrastructure typ-
ically operates at a center frequency of 2.4 GHz with a
bandwidth of 20 MHz per channel (4G). Due to the increase
in number of end devices and demand for higher data rates,
researchers propose the adoption of the 30 GHz frequency
spectrum with a bandwidth of 100 MHz per channel (5G). The
increased data rate helps in exchanging colossal data in real-
time. In this work, we consider an even higher range of center
frequencies than 5G, Beyond 5G (B5G) to further reduce
transmission delays. In particular, we consider the frequencies
analogous to the 6G networks with frequencies in the range
of 1− 10 THz and 500 GHz bandwidth. Although such high
frequencies help in achieving high data rates, they suffer from
low transmission ranges (1 m). Additionally, the 6G networks
suffers from environmental factors, particularly absorption and
spreading due to water vapour instead of the conventional ones
[3], which needs attention before standardization. We discuss
the relevant parameters and formulae in Section III-C.
2) Transfer Learning: TFL is an ML technique which enables
reusing a model trained for a particular task and use it
for another. TFL first trains a base model for a particular
task and then repurposes the learned parameters to serve
another task. For instance, a model trained to identify cars and
identify trucks too. In industries, machines such as Friction
Stir Welding (FSW) may use the same components to operate
globally. However, the conditions vary according to the region
of deployment. In such scenarios, a singular ML model does
not suffice for all and need region-based parameter tuning.
In this work, we propose a method for seamless sharing and
accessing the varying TFL models with minimum delay.

B. Motivation

I4.0 and ML are being used to cater to a plethora of applica-
tions in major industries today. However, it is cumbersome
for the industries to repeatedly develop unique models for
each branch. Training a model takes significant time and
effort to collect data and its conversion to a structured form.
Repeating the same effort for all the branches associated with
an industrial company is daunting. Sharing the data and models
across the globe is challenging and also causes wastage in
memory due to data redundancy. In such cases, a framework
that allows the distribution of blocks containing pre-trained
models among these industrial branches is beneficial. Further,
enabling the branches to tune the parameters according to their
needs reduces computation efforts and deployment time. These
shortcomings motivate us to develop the proposed magazine
Magnum, that allows the seamless distribution of TFL models
across the globe. We also extend this work to minimize the

blocks’ access and search time by proposing a demand-centric
distribution.

C. Why Not Blockchain?

The proposed TFL sharing scheme – Magnum is a derivative
of the traditional BC, with variations in terms of its consensus
and computational complexities. Primarily, Magnum removes
the need for a miner. Since we consider resource-constrained
FNs, excluding miners removes the need for high-performance
devices in the fog layer. The security and authenticity of the
data inserted into the blocks depend on central authorities
responsible for creating the base TFL models, which reduces
the complexity of mining huge volumes of data and also
removes the need for employing additional third parties for
verification. However, each block’s security and privacy may
be taken care of by incorporating encryption techniques or
by adopting Attribute-Based Encryption (ABE) schemes. With
the use of ABE, industries may easily store the models into
the blocks and restrict their visibility/access based on the
attributes/features of the branches.

D. Contribution

In this work, we propose a magazine for storing pre-trained
TFL models for industries to acquire and tune according to
their needs before deployment. Towards this, the specific set
of contributions in this work are:

• Magnum: We propose a magazine consisting of inter-
connected blocks that contain pre-trained ML models.
With the elimination of miners and their complex con-
sensus mechanisms, the magazine is suitable for resource-
constrained devices.

• IoT-Based Architecture: We propose the use of a fog-
cloud architecture to use centralized servers for prepar-
ing the pre-trained models and then store them across
geographically spread FNs.

• Demand-Centric Distribution: We distribute the blocks
of the proposed magazine in the fog layer based on the
demands from each location. This further reduces the
search and access times.

• Reduced latency: We exploit the features of B5G com-
munications technology to further reduce communication
delays. In comparison to conventional technologies, B5G
network offers real-time communications on the factory
floor.

It may be noted that we use the FNs only for storing Magnum
(series of TFL models). The end devices fetch the models from
the nearby FNs for on-board storage and inferences.

We organize the rest of the paper as follows: In Section II,
we present some of the existing work in literature. We define
our network architecture and formulate the distribution scheme
for Magnum in Section III. We then present and discuss our
observations on deploying Magnum and simulating it on a
B5G environment in Section IV and then finally conclude in
Section V.
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II. RELATED WORK

In this section, we briefly discuss some of the existing litera-
ture categorized as: 1. Decentralized ML and 2. Model Sharing
and Aggregation techniques.

A. Decentralized ML

Industries use ML methods for addressing a myriad of ap-
plications, which usually include data management, analysis,
and security. Zhao et al. [4] proposed an algorithm for
data clustering while maintaining user privacy. Additionally,
blockchain is a popular technique for sharing information.
Consensus and computational complexities involved in such
solutions increase the overhead of the devices. Moreover,
they are open to threats like majority attack and double-
spending. Towards this, Tanwar et al. [5] proposed a machine
learning-based solution for overcoming this issue. Yu et al.
[6] highlighted the data-driven challenges involved in industry
4.0 and its applications and proposed a big data solution for
fault detection and diagnosis. Predictive maintenance is also an
essential attribute in industrial scenarios. Susto et al. [7] pro-
posed an ML-based model using quantitative machine health
indicators for determining and predicting maintenance needs
and its outcomes. Data poisoning is yet another concerning
factor in dealing with volumes of sensitive data in industrial
scenarios. Towards this, Chen et al. [8] proposed a routine
for determining the number of loops for training a model for
detecting data poison.

B. Model Sharing and Aggregation

Yan et al. [9] demonstrated a distributed power allocation
mechanism for the edge users in distributed wireless networks
for enhancing the spectrum efficiency using a Federated Learn-
ing (FL) system. One prime drawback of FL is its aggregation,
which is dependent on centralized servers. Towards this, the
authors in [10] proposed a distributed learning approach for
overcoming this issue. Similarly, Wang et al. [11] proposed a
theoretical model for determining the tradeoff between local
and global aggregations in FL. Lu et al. [12] designed a
secure data sharing framework for distributed parties using
blockchain. They shared FL models instead of the actual data
for enhancing security. Li et al. [13] exploited the features of
TFL to develop a system for recommending places according
to interest as users move from one location to the other.
Researchers have also been exploiting the applications of TFL
in a plethora of applications.

C. Synthesis

Researchers have been developing novel methods for sharing
and delivering ML models. However, there exists a lacuna in a
precisely distributed framework for sharing trained TFL mod-
els among industrial plants/branches. Towards this, we propose
Magnum, a lightweight ML model sharing scheme, to bridge
the gap between the industrial plants and their accessibility to
the TFL models. Further, blockchain-based methods involve
complex operations for proof-of-work, which is undesired
in privately operating operations. We envision the proposed

framework to enable the sharing of models, speed up the
process of training and delivery for the requesting branches,
and lower the computations necessary for deployment. The
proposed framework is independent of the dataset and the
TFL model. Magnum may be used by industries for training a
base model and sharing it with the geographically distributed
branches for applications ranging from defect analysis [14]
to security [15]. Other use cases for Magnum includes, but
not limited to, detection of ice on windmill blades [16],
multistage TFL models for vibration-based fault diagnostics
[17], diagnosis in sparse auto-encoders [18], and others.

III. SYSTEM MODEL

In this section, we first present the proposed network archi-
tecture for realising Magnum and then formulate the proposed
scheme for delivering/storing the blocks close to the branches
demanding for the models. It may be noted that we refer to
branches and plants interchangeably.

Figure 2: Network architecture and information flow.

A. Network Architecture

We consider the network architecture in Fig. 2 for realising the
proposed Magnum framework. We consider a set of centralized
servers S = {s1, s2, ..., sp} that develop the pre-trained base
models (Step 1). The same authorities insert these models into
the blocks of the magazine for distributing among the FNs in
different networks (Step 2). The distribution is based on the
location of the demands from the plants. We consider a set
of models M = {m1,m2, ...,mn} from the servers and their
corresponding set of weights as W = {wm1

1 , wm2
2 , ..., wmn

n }.
We store these models and weights in the blocks and then
distribute among the set of FNs F = {f1, f2, f3, ..., fq} close
to the locations where demand for the particular block is high
(Step 3). This helps in reducing delays in accessing the models
in the proposed distributed framework. We consider a block
in the network b1 among the set B = {bm1

1 , bm2
2 , ..., bmn

n }
and send it to an arbitrary fj for storage. The set of end
devices E = {e1, e2, ..., er} in the industrial plants download
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the necessary blocks (Step 4) and tune it accordingly before
deployment (Step 5). We consider a B5G network on the
factory floor, which reduces fetching time from the FNs and
transmissions across the devices. We use the FNs only for
storing Magnum (series of TFL models). The end devices
fetch the models from the nearby FNs for on-board storage
and inferences. We now present the selection of the subsets
from F for distributing the blocks in B.

B. On-Demand block Distribution

The central servers is where the magazine containing N
independent blocks B[1:N ] are present. We assume the ith

block to be of Pi bits. The distribution of the blocks is a
two stage process: 1) Placement and 2) Delivery. During the
placement stage, we populate the memory in ei and we denote
the content as denoted by Zci at the end of the placement stage.
The requests from the end devices in E via the FNs fj are
revealed after the completion of the placement stage. We use
the generic demand evaluation model from the works of [19] to
determine the demand (Dc

i ) from E. We calculate the demand
function as:

Dc
i (t) =

N e
c

T decayc

. exp

(
t− θc
T decayc

)
(1)

where N e
c is the number of end users requesting to access

the blocks, T decayc is the popularity decay time, θc is the
introductory time or release date of a block, and t is the current
time instant. From equation 1, we derive the Popularity P (t)
and Rate of requests per user R(t) of the ith block as:

Pi(t) =
Dc
i (t)

Ri(t)
(2)

where Ri(t) =
∑
cD

c
i (t). We group the FNs from F as Gfk

based on the equations 1 to find the most requested/demanded
block by the end devices and also the most popular block. We
distribute these blocks to the identified groups of FNs, which
the end users access when necessary.

C. Block Transfer

We consider a B5G scenario for distributing the blocks from
the FNs identified in Gfk . For the signals y = hx+σ, where h
is the channel gain, x is the actual signal and σ is the noise,
we consider the spreading (Aspr) and molecular absorption
(Aabs) losses in the network to optimise the time necessary
for the blocks to reach the FNs. Both spreading and molecular
absorption are functions of the center frequencies (F) and
distance (d). We calculate these values in (dB) as:

Aspr = 20log

(
4πFd
c

)
(3)

where c is the speed of light and

Aabs = k(F)d10 log10 e (4)

where k(F) is the absorption coefficient. We calculate the
overall effect on the signal as A(F , d) = (Aspr + Aabs). For
a signal transmitted with power ρ, the receiver receives the

signal with power A−1(F , d) × ρ. Using these factors, we
calculate the data rate (DR) of a link (l) in a B5G network as
DRl = BWl × log(1 + SNRl):

DRl = BWl × log

(
1 +

ρA−1l (F , d)
σl(T , BWl)

)
(5)

where BWl is the bandwidth of the link ranging from 250−
500 GHz, SNRl is the signal to noise ratio, σ(T , BW ) is
the Johnson Nyquist noise at T temperature, represented as
σ(T , BW ) = kB×T ×BW , where kB is Boltzmann constant.
The blocks use these links to travel to the FNs in Gfk through
multiple hops (Hk) in the network. Using the expression for
DR in equation 5, we calculate the transmission time (ttransi )
of the ith block of size bsizei as:

ttransbi =

|Gf
k |∑

k=1

Hk∑
l=1

bsizei

DRl
(6)

Utility Function: We design the proposed model for minimiz-
ing the time for transferring the blocks to the FNs. Towards
this, we consider the number of hops in the network to reach
each FN in Gfk by each block b in B. Mathematically,

Topt = Min
|Gf

k |∑
k=1

B∑
i=1

Hk∑
l=1

ttransbi (7)

subject to d ≤ dmax, F ≤ Fmax, σc < ρ, σc <
σmax, Eloss < Etotal, and (Aspr, Aabs) ≥ 0. These con-
straints represent the following (left to right): first two con-
straints imply that the distance of transmission and the fre-
quency in the B5G channels is less than or equal to the
maximum allowable thresholds; third constraint implies that
the amount of channel noise σc present in the link is always
less than the total power of the signals ρ; fourth constraint
states that the channel noise in the link is less than the
maximum noise permitted σmax; fifth constraint specifies that
the amount of energy loss Eloss incurred in the link is less than
the total energy of the link Etotal; sixth constraint represents
positive values for Aspr and Aabs.

Theorem 1. The utility function (Topt) in equation 7 is convex.

Proof. We prove the convexity of the proposed utility function
in equation 7 using a Hessian Matrix. We calculate the first
derivative of the expressions as:

Ti =

(
S1

DR1

)
+

(
S2

DR2

)
+ ...+

(
Sn
DRn

)
(8)

We observe that they have unit values in all cases except that
for those with respect to data rate, which are in the range
of −1

DR2
1

to −1
DR2

n
. On calculating the second derivative of the

equation, we obtain the Hessian Matrix H(Ti) as:

H(Ti) =


d2T
ds21

... ... d2T
ds1dDRn

. . .
d2t

dDRnds1
d2T
dDR2

n


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On solving the derivatives, we observe that H(Ti) contains 0
in every cell except the diagonals which range from 2

DR3
1

to
2

DR3
n

, implying values greater than 0. We obtain a 2n × 2n
matrix towards the end and since H(Ti) ≥ 0, and its transpose
is equal to the original resultant matrix, we prove the convexity
of the objective function equation.

D. Solution Approach

We solve the proposed optimization function in equation 7
for transferring the blocks from the FNs. For simplicity in
representation, we consider the hops and reduce the expression
as:

Ti =

H∑
l=1

(
bsizei

DRl

)

Ti =
bsizei

BW × log(1 + SNR)
(9)

In this section, we recursively solve the equation 9 using the
branch and bound method, primarily based around A(F , d).
We aim to minimize the value of the objective function by
focusing on Aspr, Aabs and assign them as decision variables
of our optimization problem. Mathematically,

Min Z = Aspr +Aabs (10)

subject to the constraints in equation 7. Expanding each
constraint for the branch and bound method, we obtain the
expressions: Asprd1 + Aabsd2 ≤ dmax, AsprF1 + AabsF2 ≤
Fmax, Asprσ1 + Aabsσ2 < ρ, Asprσc1 + Aabsσc2 < σmax,
and AsprE1 + AabsE2 < Etotal. We use Branch and Bound
minimization technique to the Nonlinear Programming prob-
lem to obtain the smallest possible values of Aspr and Aabs.
Depending upon the number of constraint equations present,
we identify the total combination of possible equations. Typ-
ically, the number of combinations possible is

(
β
D
)
, where β

is the number of constraints and D is the number of decision
variables. For each of the expanded equations, we consider the
solutions that yield the minimum value for Ti. We explain the
same in Algorithm 1 to illustrate one solution for Aspr and
Aabs using 2 equations for FNs from Gfk for some arbitrary k.
The overall process follows a similar optimization procedure
for all the possible combinations and determining minimal
Aspr and Aabs values.

As we obtain the minimum values of Aspr and Aabs, we
substitute the values equation 5 to minimize the Ti in 7. For an
error tolerance of ε, the proposed routine in Algorithm 1 has
a time complexity of O(N

2β
ε ), where β is the corresponding

number of constraints for the branch and bound method.
Asymptotically, Algorithm 1 has a time complexity of O(N2).

E. Delay at End Devices

We define the time necessary for the end devices/users to
fetch the blocks using a modified expression of equation 7.
In addition to the transmission time, the end devices need to
search through the entire magazine for the appropriate block

Algorithm 1: Optimizing the block transfer from the
FNs
Input: dmax, Fmax, ρ, σmax, Etotal, Gfk
Result: Z optimized - Aspr, Aabs
initialization;
for i = 0 to N, (N = 10) do

Compute Aspr and Aabs using equations ??, ?? ;
// Considering one possible combination of

constraint equations

Compute Z using Aspr and Aabs ;
// Values of Aspr, Aabs from previous step

Compute lower bounds of branch 1 using Aabs and
Aspr;

Compute upper bounds of branch 1 using (m,n);
// (m,n) rounded up values of Aspr, Aabs

Consider lower bound higher decimal values in
Aspr and Aabs for next branch;

Determine new values for Aspr and Aabs;
if Zn > Z1 then

Particular node is not feasible ;
else

continue;
end
if Upper bound = Lower bound then

Optimal solution: Min Aspr, Aabs ;
else

Continue branch and bound until Upper bound
= Lower bound;

end
end

before downloading. We represent the optimization function
for determining the delay for end users as:

Min Tuseri =

|B|∑
i=1

Si +
H∑
l=1

bsizej

DRl
(11)

where S is the time necessary for searching through one
block and the rest of the variables are the same as discussed
in the previous sections. We use the same constraints as in
equation 7 with an additional constraint that |B| ≤ |B|max,
which restricts the search space to the number of blocks in
the magazine.

IV. PERFORMANCE EVALUATION

We perform our experiments on an Intel i5, 2.5GHz system
with 8 GB RAM, running on Google Colaboratory Kernels.
We design and implement the proposed blocks and magazine
on the mentioned system and simulate the B5G environment
on the same. We use Python 3.5 for realising 5 TFL models to
establish a proof of concept for the proposed Magnum frame-
work using the MNIST and CIFAR-10 datasets. We consider
6 models in this work: Neural Network (NN), Random Forest
(RF), Decision Tree (DT), Support Vector Machine (SVM),
Gaussian Naive Bayes (GNB), and ResNet50. We simulate the
B5G network on an area of 50×50 m2. We deploy 200 devices
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Table I: Comparison of model sizes before and after inserting
them into the blocks.

Models Actual Size Magnum BlockTDM
NN 4 Kb 5.6 Kb 6.9 Kb
RF 7.80 Mb 9.3 Mb 9.7 Mb
DT 89 Kb 92.3 Kb 93.6 Kb

SVM 15 Mb 16.8 Mb 17.0 Mb
GNB 17.6 Kb 20.1 Kb 21.6 Kb

ResNet50 1.2 Mb 1.53 Mb 1.91 Mb

on the factory floor and design our environment for testing the
proposed Magnum framework according to the architecture
discussed in Section III-A and Fig. 2. We present and discuss
our observations in the subsequent sections in comparison
with the works of Zhaofeng [2] and Lu et al. [12]. While
the work in [12] focuses on enhancing security, they proposed
including federated learning into the consensus mechanism.
On the other hand, the authors in [2] (BlockTDM) adopted
conventional consensus method. Since BlockTDM has lower
resource demands, we use it as the benchmark solution for
comparing the Magnum framework.

A. Block size

We present the size of each block on storing the models of
each kind. Table I represents the comparison between the sizes
of 6 models (actual) after training and its corresponding size
on inserting them into the blocks (Magnum and BlockTDM).
We observe that the actual size of the model is less than its
corresponding size in the block. The increase in the block size
is due to extraneous variables such as addresses to the next
block and other control variables necessary for the functioning
of the Magnum framework. The size of the blocks depends on
the size of the problem, the training data, algorithm, feature
size, and others. We observe an increase of 23% in the case
of BlockTDM as it adds the necessary mining details such as
ID, consensus mechanism, and others. Focusing on Magnum,
we observe that the RF model generates sizeable blocks (9.3
Mb) and a 19% increase in model size in the block. Such
sizes appear because the RF models store multiple decision
trees. On the other hand, we observe a maximum of 40%
increase in size on writing into a block in the case of the
NN models. Intuitively, we observe such values of block sizes
as some amount of slack memory usage is always taken into
consideration during storage. We notice that the SVM models
generate blocks of the largest size. This is because of the
computation of the kernel matrix involved in SVMs, which
is relatively large. In case we remove the kernel matrix, the
size of the block will reduce. However, on the removal of the
matrix, the SVM models need to recalculate the matrix values
repeatedly, which increases delay.

B. Accuracy

It is crucial to ensure the reliability of the pre-trained base
models contained in them before sharing the blocks with
different industrial branches. For the same dataset, we vary
the parameters of each model and record their accuracy before
and after inserting them into the blocks for a comprehensive

Table II: Comparison of accuracies before and after inserting
into the blocks.

Models Actual Model Magnum BlockTDM
NN 98.2% 98.2% 98.2%
RF 93.8% 93.8% 93.8%
DT 98.1% 98.1% 98.1%

SVM 93.4% 93.4% 93.4%
GNB 91.5% 91.5% 91.5%

ResNet50 91.3% 91.3% 91.3%

Table III: Memory and CPU usage by the blocks.

Models Memory Usage CPU Usage
Magnum BlockTDM Magnum BlockTDM

NN 0.3% 0.5% 7.79% 8.01%
RF 4.7% 5.6% 33.88% 34.45%
DT 2.4% 3.1% 28.25% 28.88%

SVM 5.9% 6.4% 61.54% 62.22%
GNB 0.9% 1.3% 19.46% 19.74%

ResNet50 2.9% 3.6% 20.75% 24.12%

view of each block. We present our observations in Table
II, where we compare the accuracy of the models before
and after inserting them into the blocks. As expected, we
observe that the accuracies of each model remain unchanged
for both Magnum and BlockTDM. We infer that the blocks
are transmitted and stored at the FNs without degrading the
quality of the model or distortion during transmission, proving
the reliability of the proposed Magnum framework.

C. Memory Usage

We analyze the percentage of memory used by the blocks at
different time instances in an FN. We capture the memory
usage percentage of a block by distributing the blocks to
the FNs at multiple instants and present them in Table III.
Across multiple instances, we observe a constant amount of
memory usage with respect to each model. We notice that
the memory usage corresponds to our observations in Table
I and confirms that the block size ∝ memory usage for each
block. Moreover, due to additional content specific to mining,
we observe an increase of 1% in memory consumption in the
case of BlockTDM. We notice that the SVM model consumes
the maximum memory, followed by the neural network model.
We infer that the selection of the devices/FNs for storing the
blocks depending on the type of the model is necessary for
optimized operations of the Magnum chain.

D. CPU usage

We record the CPU usage while writing and reading the mod-
els from the blocks over multiple instances and present them in
Fig. 3. We observe that the blocks consume a constant amount
of CPU percentage over all the iterations, irrespective of the
models. We observe that on average, BlockTDM demonstrates
1% more CPU consumption because of the mining process
in Table III. It may be noted that we observe such small
increase as we use an i5 processor during implementation
and will demonstrate higher difference in case of resource-
constrained devices. The neural network model has a minimum
requirement (in Magnum) of less than 10%, while all the
others demonstrate the need for more than 20% of the CPU.
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Figure 3: Percentage of CPU usage at various instances for
different blocks.

Figure 4: Data rate in the B5G channels.

Although all the models demonstrate a maximum of 40% CPU
usage, the SVM model demonstrates the requirement of almost
80% of the CPU. We attribute this behavior to the fetching
and computations across the kernel matrix. We comment that
the different blocks require a varying percentage of the CPU,
depending on the type of the model, which mandates the need
for optimized device/FN selection.

E. Data rate in the B5G channel

We numerically compute the data rates in the B5G channels by
accounting for the effects due to Aspr and Aabs in equations
3 and 4. We then calculate the data rate using equation 5
for a bandwidth of 500 GHz. Fig. 4 depicts the data rates
with varying ρ values over different center frequencies. As
expected, we observe that the data rate increases with ρ. From
these values, we calculate the delays for transmission over the
network with data rates varying in the range of 7.5−8.5 Tbps.

Table IV: Writing time of the models into the blocks.

Models Magnum BlockTDM
NN 0.006 s 0.06 s
RF 0.475 s 17.61 s
DT 0.057 s 0.143 s

SVM 2.664 s 74.73 s
GNB 0.023 s 0.083 s

ResNet50 0.062 s 2.628 s

F. Delays

We categorize the delays necessary for operating under the
Magnum framework into two categories: block 1) writing, 2)
reading, and 3) transmission time.

(a) Writing time. (b) Reading time.

Figure 5: Writing and reading time for each block.

Figure 6: Transmission delay for the blocks to reach the end
devices from the FNs.

Block Writing Time: We define the block writing time as
the time necessary for the models and their specifics to be
written/loaded on the block. We record these delays over
multiple instants for each of the models considered in this
work and present our observations in Fig. 5(a). We observe
that the nature of all the curves is similar across all models
(less than 1 second), apart from the SVM model (almost 10
seconds). We attribute this behavior to the size of the blocks
discussed in Table I. On the other hand, BlockTDM adds each
block after mining the data, which incurs additional delay
(74.74 s), as shown in Table IV. The delay is lower in case
of smaller models and increases as the model size increases.
Such delays are unacceptable in real-time environments, which
introduces operational challenges. From these observations, we
infer that the writing time is directly proportional to the size
of a block and the removal of mining time in Magnum saves
significant time, specifically for larger models.

Block Reading Time: We define the block reading time as
the time necessary for the devices to fetch the models and
their specifics from the blocks. We record these delays from
multiple instances and present them in Fig. 5(b). We observe
that, on average, the Magnum framework requires an overall
time of 0.01 seconds for reading the blocks. We observe the
least amount of reading delay for Neural Network models.
It takes an infinitesimally small amount of time to read the
model details stored in the blocks compared to that of the
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writing time in Fig. 5(a). We observe a similar trend that
with increasing size of the blocks, the reading time also
increases. We comment that the model fetching time is limited
to 0.1 seconds for blocks as large as those for SVM, implying
minimal delay of the proposed system.

Transmission Delay: We present the transmission time for
transferring the blocks from the FNs to the densely deployed
devices on the factory floor. As expected, we notice that the
delays in Fig. 6 correspond to the block sizes. It may be noted
that the transmission delays in Fig. 6 are in log scale for better
representation due to the diminutive delay values for NN, DT,
and naive bayes models. In the worst case for the SVM models,
we observe a maximum of 16 µs delay in transferring the
model to the FNs and a minimum of 4.7 ns in case of neural
network.

V. CONCLUSION

In this work, we proposed a lightweight magazine for storing
TFL models for industries in the form of blocks. The central
servers in an industry train base models and insert them into
the blocks. We formulate a model for identifying the locations
where demand for a particular block is high and distribute it.
The end users (plants operating under an industry) identify
the necessary models and fetch them from these blocks. They
tune the parameters according to their need and deploy them
after training. We further propose the use of a cloud-fog-based
architecture to enhance the access to the geographically spread
plants and also to minimize transmission and fetching delays.
The proposed scheme Magnum helps reduce the time for
training and minimize storage and data redundancy. We further
propose the use of B5G communication technologies for
reducing transmission delays. Through extensive experiments
(for Magnum) and simulation results (for B5G networks),
we presented the feasibility of the proposed framework with
respect to the block size, CPU and memory usage, and delays.
In the future, we plan to extend this work by designing access
policies and enhancing security for the blocks.
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