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Abstract—In this paper, we propose a two-step distributed
horizontal architecture for computation offloading in a fog-
enabled Internet of Things (IoT) environment – HD-Fog – to
minimize the overall energy consumption, and latency while
executing hard real-time applications. The HD stands for the
horizontal distribution of the tasks in the fog layer. Each sensor in
the user devices independently captures data of varying formats.
Parallel execution on these data is possible based on its Directed
Acyclic Task Graph (DATG), and the corresponding results
facilitate the ease of decision making. Towards this, in HD-
Fog, the sensor nodes in user devices offload their tasks to a
nearby fog node based on a greedy selection criterion. This fog
node then further offloads the smaller sub-tasks, based on the
DATG, among other fog nodes for parallel execution. Through
extensive real-life metric-based emulation and comparison against
traditional Fog and Cloud computing schemes, we observe that
our approach 1) reduces the overall operational delays by 29%
and 96%, and 2) offers promising speedup values. The proposed
HD-Fog scheme also indicates a reduction in energy consumption
by 30% compared to traditional fog computing schemes.

Keywords—Computation Offloading, Fog Computing, Distributed
and Parallel Computing, Queueing Theory, IoT

I. INTRODUCTION

Smart user devices depend on multiple sensors like cameras,
radars, proximity sensors, and others, which produce a massive
amount of data. Data from each of these sensors need complex
processing for deriving inferences. Offloading such execution
routines to external platforms such as the Fog is beneficial for
real-time operations. However, existing schemes only focus on
the selection of one Fog Node (FN) and executing the tasks
there in its entirety [1]. The tasks from IoT Sensor Nodes
(SNs) contain sub-tasks with interdependencies in the form
of Directed Acyclic Task Graphs (DATGs) [2]. Simultaneous
execution of the ones at the same level in the DATG may
reduce the processing delay significantly.

In this work, we propose a two-step task distribution scheme
named, Horizontally Distributed Fog Computing (HD-Fog),
such that SNs with Radio Access Network (RAN) technology
offload their high-level tasks to one of the FNs within their
vicinity, which further redistributes the sub-tasks to neigh-
boring FNs considering their current states. Complex opti-
mization techniques for device selection usually overburdens
the SNs and FNs as they are typically resource-constrained
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Fig. 1: Overview of the proposed HD-Fog scheme

in terms of computation capability, battery power and stor-
age capacity. Moreover, with increasing participants (nodes),
the convergence time increases exponentially. For fast and
straightforward execution in robust environments, we propose
a horizontal task distribution architecture and formulate a
greedy scheme for taking decisions in real-time.

Example Scenario: An IoT user device consists of a het-
erogeneous set of sensors like cameras, radars, proximity
sensors, lidars, and others (Fig. 1). For instance, data from
smart cars need to detect objects of interest and each of these
operations is independent of one another, opening the scope
for parallel execution. Representation of these operations in the
form of DATGs offers simplicity and help in accommodating
the possibility of interdependent execution. HD-Fog offloads
the sub-tasks on the same level (in DATG) to different FNs for
simultaneous execution, which helps in saving significant time.
In the case of dependent tasks, the FNs wait for the results.

A. Motivation
The nature of tasks in an IoT environment is hard real-time and
cannot afford delays in reacting to the data. While most of the
existing solutions rely on offloading tasks to external platforms
for execution in their entirety in one single location [1], it is
advantageous to break the task into smaller indivisible sub-
tasks and form DATGs to introduce parallelism. Such parallel
processing saves a lot of time and energy compared to the
conventional methods of sequential processing. The possibility
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of saving time, energy, and natural resources serves as a
motivation for designing our architecture and scheme. Further,
as complex optimization computations take significant time to
converge with the increasing number of nodes and that the
SNs and FNs are devoid of high computational resources, we
formulate the selection of the FNs for offloading on a greedy
basis, instead of sophisticated optimization techniques.

B. Contributions
In this work, we propose a horizontal computation offloading
scheme in the fog layer for enabling parallel processing when
possible. The key contributions in this work are as follows:
• Horizontal Task Distribution: We propose and design

a two-step horizontal task distribution architecture for
the SNs to offload their tasks to the FNs. These FNs
identify the DATG and redistribute the sub-tasks among
other FNs (horizontally) for parallel execution.

• Parallel Execution: We enable parallel execution of the
sub-tasks on the same level, saving significant time.

• Greedy Formulation: We formulate a greedy selec-
tion scheme (using principal FN parameters) instead
of other complex optimization techniques to avoid de-
lays/overheads in hard real-time applications.

• Watchdog: Over multiple iterations, the FNs may start
misbehaving due to unprecedented issues like power cut,
operational overload, and others. To account for their
recoveries, we design a watchdog-based alarm system
for the FNs based on the neighboring FN’s experiences.

It may be noted that we refrain from considering channel
access and congestion parameters to make this work more
focussed and plan to address these issues in our extended
work. Approaches such as network slicing [3] may be helpful
for optimized RAN access. Further, [2] provides a code-based
technique for creating DATGs.

II. RELATED WORK

Significant effort has been made in load balancing in con-
strained devices in the case of Mobile Cloud, Edge, and Fog
Computing. The devices at the edge can help in complementing
the services of the remote cloud. A theoretical analysis of the
impact on the performance of IoT devices caused by policies
that offload user tasks to edge computing servers can be found
in [4]. While most work focus on finding optimal placement
of the components of a task, Sardellitti et al. [5] considered
a multi-cell mobile edge-computing scenario with dense de-
ployment of radio access points and jointly optimized radio
and computational resources. The authors in [6] also jointly
optimized radio and computational resources for offloading
from smartphones to femto-cloud. As these schemes help in
avoiding the devices from getting overloaded and enhances
reliability, energy-aware decisions further expand lifespan [7].
Wei et al. [8] proposed a cache-aware computation offloading
scheme in cloud, reducing response time.

Although the term Fog is relatively new, the concept has
been in the literature for quite some time for complementing
the cloud services using devices at the edge [9]. For instance,

The authors in [10] proposed a Fog-based scheme for predict-
ing wildfires in agricultural fields. Wang et al. [11] proposed
a learning-based approach for offloading tasks in the fog layer
within constrained deadlines. However, as the number of users
increases, the time complexity to reach equilibrium grows
exponentially, which led to the formulation of another near-
optimal resource allocation scheme. Jiang et al. [12] proposed
an energy-efficient task offloading scheme in Fog-enabled
IoT environments. Similarly, the authors in [13] presented
a Reinforcement Learning-based offloading scheme with a
primary focus towards energy harvesting on the edge. Chen
et al. [14] also proposed an energy-aware offloading scheme
to the cloud, with a special focus on industrial scenarios.

Synthesis: Task offloading in Cloud, Edge, and Fog Com-
puting is a matured field of study among researchers. These
solutions typically focus on energy, resource, and time-aware
offloading of the tasks to external platforms. They also focus
on mobility-aware task offloading by predicting the positions
of the user devices. However, these solutions only consider
executing the tasks on one location in its entirety. Limited work
exists that considers tasks as DATGs and offloads them as sub-
tasks in a heterogeneous environment in a horizontal fashion.
While most of the work relies on centralized agents and
vertical task offloading, we propose a decentralized horizontal
architecture for dynamic redistribution of the sub-tasks.

III. SYSTEM MODEL

Fig. 1 depicts the working of the HD-Fog scheme considering
two types of devices: 1) Fog Nodes (FNs): These are network
edge devices that offer computation services in addition to
their regular networking services. These devices mostly include
gateways, hubs, switches, bridges, routers, and others [15],
and 2) Sensor Nodes (SNs): These are resource-constrained
devices onboard a user device that monitor (sensors) and
act (actuators) when needed. Cameras, automated machinery,
temperature, humidity, light sensors are some of the examples
of SNs, among many others.

A. The Horizontal Architecture

As shown in Fig. 1, the FNs share information among one
another via messages using a strong backhaul mesh network.
The SNs connect to one of these FNs (within its vicinity)
using RAN technology (Step 1). On receiving the task, the
corresponding FN identifies sub-tasks and their corresponding
DATG, for redistribution among the other available FNs (Step
2 and 3) for parallel execution. We consider our scenario to
be pseudo-static so that the SNs get the results back from
the FN chosen initially (Step 4 and 5). In the future, we plan
to consider scenarios where the SNs will be independent of
mobility restrictions. Also, we make the following realistic
assumptions: 1) We consider that the FNs simultaneously
execute communication as well as computation routines. 2)
As we refrain from addressing channel access parameters, we
consider a lossless network.
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B. Solution Approach

In our system, U = {u1, u2, u3, ..., uM} and V =
{v1, v2, v3, ..., vN } are the sets of heterogeneous SNs and
FNs present in the network. The FNs share their computation
power, storage, available power and distance related informa-
tion through periodic beacon signals. We consider Ji as the ith
SN’s two tuple high-level task, < Ii, Di >, where Ii is the total
size and Di is the total number of cycles necessary for execut-
ing the entire task. We normalize the configuration parameters
for a device x, and define them as follows. Computation Power
is the number of cycles it can perform per unit time, and
is the ratio of the device’s current computational capability
(Cdev

x ) and the the maximum achievable value (Cmax
x ) as

Cnorm
x = (Cdev

x /Cmax
x ). Residual Storage is the ratio of the

device’s current available storage (Sdev
x ) and the maximum

capacity value (Smax
x ) represented as Sresx = (Sdev

x /Smax
x ).

Waiting Time is the duration a device has to wait for the
task execution, inclusive of transmission (W Ji

x ), the waiting
in the FN’s queue (W queue

x ) and return (W result
x ) times. We

compute the waiting time as ratio of the sum of these times and
the maximum tolerable delay as: Wnorm

x = (W total
x /Wmax

x )
where, W total

x = W Ji
x + W queue

x + W result
x . We consider

M/M/c for the FNs and M/M/1 for the SNs for W queue and
calculate it as 1/ρ − λ where ρ and λ are the execution and
arrival rates, respectively. If the value of Wnorm

x results to
be greater than 1, we do not consider the FN for offloading.
Distance is the stretch between a device x and the FNs or other
SNs within their vicinity and calculate it as the ratio between
the distance (ddevix ) and the transmission range (dtransi ) of the
SNs as: Dnorm

x = (ddevix /dtransi ). Residual Power is the power
(in units) available for use, we calculate it as the ratio of the
device’s current available power (P dev

ui
) and the the maximum

capacity value (Pmax
ui

) as: Pres
ui

= (P dev
ui

/Pmax
ui

). Reliability
is the measure of trust based on neighboring devices’ past
experiences as a ternary variable, that is, it can take values
−1 for unknown reliability, 0 for unreliable devices and 1
for reliable devices. We explain the manner in which the
devices update reliability of other devices in section III-D.
We formulate a utility function for the SNs from which they
greedily choose FNs and term it as Clout from here onwards. It
may be noted that in typical IoT environments, vendors provide
abundant supply of power to the FNs and hence we do not
consider Pres

vj for FN selection.

Proposition 1. The clout for offloading tasks by ith SN to an
FN vj is calculated as a function of the FN’s Cnorm

vj , Sresvj ,
Wnorm

vj and Dnorm
vj . In case of offloading to the SNs, we use

the same factors along with Pres
ui

. Mathematically,

Cdevivj = (1 + γvj )

⌈
Cnorm

vj Sresvj

Wnorm
vj Dnorm

vj

⌉
, in case of FNs (1)

Cdevi
uk

= (1 + γuk
)

⌈Cnorm
uk

Sresuk
Pres
uk

Wnorm
uk

Dnorm
uk

⌉
, in case of SNs (2)

where k ∈M such that k 6= i, γx represents reliability and is
treated as a constant, x in γx is ui for SNs, and vj for FNs,

respectively.

Justification: As Cnorm
x rises, the devices perform faster and

execute more number of tasks. Thus, Cdevi
x ∝ Cnorm

x ; Devices
accept more tasks as well as larger tasks for computation with
larger Sresx . Thus, Cdevi

x ∝ Sresx ; Due to low delay tolerance
in hard real-time scenarios, Cdevi

x ∝ 1/Wnorm
x ; With lower

distance, the SNs disseminate less power and also save W Ji
x

which is desirable. Thus, Cdevi
x ∝ 1/Dnorm

x . We conclude,

Cdevi
vj = (1 + γvj )

⌈
Cnorm

vj Sresvj

Wnorm
vj Dnorm

vj

⌉
, in case of FNs

where, γvj represents reliability of FN vj and works as
a proportionality constant. In case of SNs, we consider an
additional parameter, that is (P res

ui
). SNs with more power

have the likelihood of successfully executing the tasks and
returning results. Thus, Cdevi

x ∝ Pres
x , implying:

Cdeviuk
= (1 + γuk

)

⌈Cnorm
uk

Sresuk
Pres
uk

Wnorm
uk

Dnorm
uk

⌉
, in case of SNs (3)

C. Horizontally Distributed Fog Computing Scheme
HD-Fog provides a decentralized platform for the SNs to
offload their tasks independently. Before choosing an external
FN, the SN must decide whether to offload or to perform
the required computations locally. We introduce weights (ωui

)
where 0 ≤ ωui ≤ 1, such that they can be varied to determine
the mode of execution (local/remote). For instance, we set
the value of ωui = 1 for local computation on-board the
SN and activate execution/performance mode (if battery Pres

ui

permits). Otherwise, the SNs enter power saving mode by
setting ωui

values close to 0. These weights allow the SNs to
make autonomous decisions. In this work, we calculate ωui

as a function of the residual energy as ωui
= Pres

ui
/Pmax

ui

We multiply these weights with the clout values, that is,
ωuiC

devi

local for local execution and (1 − ωui)Cdevix for external
execution. The SN offloads its task to the external platform
only when the clout value of offloading along with the weights
is greater than or equal to that of the local value, that is
(1 − ωui

)Cdevix ≥ ωui
Cdevi

local. On the decision of offloading,
the SN needs to select an efficient FN. Each SN maintains
a four-column hash table where the first column refers to
the ID of the FN; The second column holds the clout values
for the respective FNs; The third column holds the reliability
values; The fourth column is binary-valued initially set to 0
and changes to 1 for reflecting the device to which the SN
decides to offload.

The devices fill their tables based on periodic beacon signals
from each device. We consider 4 tuple beacons which contain
the computation power, residual storage, waiting time, and
timestamp. We use the timestamp for calculating the distance
of the FN from the SN. For simplicity, we consider the distance
is embedded in the FN. Thus, we represent our beacon as:
< Cnorm

vj ,Sresvj ,W
norm
vj ,Dnorm

vj >. It may be noted that the
SNs consider only those FNs that may complete execution
within tolerable time (deadline). Both FNs and SNs do not
consider the ones that do not satisfy the condition. The SNs
calculate the clout values and store it in the table mentioned
above. The SN selects the device that has the maximum clout
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value in the hash table. Suppose the hash table is represented
by H and the elements as H[dev][col]. The fourth column is
subjected to change as follows:

H[x][4] =

{
1, if Cdevx > Cdevy

0, otherwise
(4)

where x is the FN corresponding to the row in H and y
represents all other devices, and

∑M+N−1
m=1 H[m][4] = 1

where x, y ∈ U, V and x 6= y. We use this for ensuring that
each SN does not select multiple FNs for offloading.

In the future, the SNs that wish to provide computational
services will generate similar beacons. However, their beacons
are 5 tuple as they also have the power constraint. Thus, <
Cnorm

uk
,Sresuk

,Wnorm
uk

,Dnorm
uk

,Pres
uk

> represents the beacons.

Algorithm 1 Selection of FN by SN uk

INPUTS:
1: • Cnorm

vj : Computation power of FN vj .
• Sresvj : Residual storage of FN vj .
• Wnorm

vj : Waiting time of FN vj .
• Dnorm

vj : Distance of FN vj from SN uk.
• γvj : Reliability of FN vj .

OUTPUT: Vuk
: FN with maximum clout value.

2: for i = 1 to N do . N : Total no. of FNs
3: if Dnorm

vi ≤ Communication range of uk then
4: Compute Cdevuk

vi according to Equation (1)
5: Update H
6: if Cdevuk

vi ≥ Cdevuk
max then

7: Update device selection in H
8: Set Vuk

= vi
9: end if

10: else
11: Perform computation locally
12: end if
13: end for

D. Reliability
HD-Fog scheme has a reliability system where the neighboring
devices maintain the reputation of a particular FN. In order
to achieve this, the devices in the HD-Fog scheme have four
major components: monitor, reputation manager, a reputation
table for recording the reliability values, and an alarm. The
monitor acts like a watchdog that keeps observing the nature
of nearby devices that offer services. Since it is not feasible
to keep records of all the devices, we limit the observation to
only those that are in the range of RAN. The reliability of the
devices is a result of self-experience and feedback from others.
The data from the monitor passes on to the reputation manager.
The reputation manager analyses the table which contains a
misbehavior count, and the reliability is lowered or improved
in comparison with a predefined threshold. The reliability of
the devices may be scaled to a value in the range of 0-10,
and categorize as: 0-3: Unreliable, 3-6: Moderately reliable,
6-9: Reliable, and 9-10: Highly reliable. The reliability factor
is increased on successfully executing 5-10 tasks (subjective)
and decremented by 0.5 in case of each failure. Fuzzy-based

methods may also prove beneficial in determining the relia-
bility of the devices. Whenever the reliability value changes,
the alarm component broadcasts a message containing the
information indicating the increase/decrease of the reliability
of services by a particular device. It may be noted that we
assume that the fog nodes do not demonstrate failures mid-
way of its execution and we plan to address this issue in
our extended work. However, since the FNs transmit periodic
beacons, it is relatively straightforward to detect FNs that are
not transmitting any. Under such circumstances, the task/sub-
task may be reassigned to some other FN (considering delays
due to reassignment are under the deadlines). The reliability
factor may be used to assume the trust on the reviving FN.

Algorithm 2 HD-Fog (on FN selected in Algorithm 1)

INPUTS:
1: • Ji: Task from ith SN.
• Cnorm

vj : Computation power of FN vj .
• Sresvj : Residual storage of FN vj .
• Wnorm

vj : Waiting time of FN vj .
• Dnorm

vj : Distance of FN vj from FN vk.
• γvj : Reliability of FN vj .

OUTPUT: Set of FNs for execution.
2: for j = 1 to K do . K : Total no. of sub-tasks
3: for i = 1 to N do . N : Total no. of FNs
4: Compute Cdevuk

vi according to Equation (1)
5: Update H
6: if Cdevuk

vi ≥ Cdevuk
max then

7: Update device selection in H
8: Set V = vj
9: end if

10: end for
11: if depth (jth sub-task) = depth (j−1th sub-task) then
12: Execute jthsub− task immediately at V
13: else
14: Execute jthsub− task after dependencies of pre-

vious depth at V
15: end if
16: end for

E. Task Distribution for Parallel Execution
We describe the task distribution and its parallel execution with
the help of an example. The SN initially selects an FN for
offloading the task (refer Algorithm 1). The SN calculates the
Cdevuk
vi (line 4) for the relevant FNs (that may execute within

deadlines) within its communication range (line 3) using the
normalized parameters in Section III-B and updates H (line
5). It then selects the one with the maximum value (lines 6-
8) for offloading. In case no FN exists within its vicinity, the
SN executes the task locally (line 11). Algorithm 2 represents
the horizontal distribution of the sub-tasks in the fog layer.
For each level of the DATG, the FN calculates the Cdevuk

vi

for all relevant FNs in the network and updates its hash table
(lines 2-8). If the sub-tasks are on the j − 1th level, the FN
starts execution immediately (lines 9-10). Otherwise, it waits
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for the execution of the previous dependencies and executions
for starting (lines 11-12). We maintain the dependencies of
the sub-tasks by simultaneously executing those that are at the
same depth/level of the DATG. Each sub-task starts after re-
ceiving the results from its parent. Finally, the FN in Algorithm
1 returns the result to the SN.

TABLE I: Simulation Parameters

Parameter Value
SN computation capability 0.1, 0.2, 0.3 GHz
FN computation capability 0.8, 1.0, 1.5 GHz

Arrival Rate at FN 188.391, 299.985,
427.429 MIPS

Service Rate of FN 1256, 2000, 2850 MIPS
Cloud computation capability 3.9 GHz
Task size 420− 12600 KB
Cycles required 1000− 30000
SN communication range 30− 50 m
Shannon Capacity 30 KBps
Energy to transfer 1B data 20 nJ
FN Power for processing 2 W

IV. PERFORMANCE EVALUATION

We compare our results based on the following benchmark
solutions and setups:

Traditional Cloud Computing [1]: We consider a server at
the center of our simulation area that accepts tasks from the
IoT SNs and returns the result on process completion. Since
we are not considering packet drops and collisions, this central
server indefinitely accepts all requests from the SNs. It may
be noted that the scheme proposed in [1] does not consider
the interdependencies of the sub-tasks and perceive them as
independent ones.

Traditional Fog Computing [16]: We consider the selection
of FNs based on the same parameters as in HD-Fog using
Equation 1. However, we do not redistribute the sub-tasks in
this case. The chosen FN executes the entire task. In case the
FNs exhaust the number of cores, the FN is not available for
offloading, and the SN has to select some other FN.

Simulation Design: We perform an analysis of the HD-
Fog scheme based on the metrics designed in Table I, and
compare its performance against Traditional Cloud and Fog
Computing schemes. We consider that the SNs communicate
using WiFi technology. Inspired from Sarkar et al. [17], we
consider ARM Cortex A5, A7, and A8 as FNs and Intel
Core i7 4770k as a cloud data center. We consider that the
SNs and FNs are randomly distributed over a geographical
region of area 1000 × 1000m2. We study the overall latency
endured with varying number of SNs with a constant number
of FNs. To establish a detailed insight into the operational
latencies, we decompose and present the overall latency into
transmission and processing latencies. In this work, we create
a set of high-level tasks in the form of DATGs and record the
results. The nodes in the DATGs are the sub-tasks, and the
edges connecting them are the dependencies among them.

Packet Overhead and Energy Consumption: We capture the
number of beacon packets in our simulation using NS3 for

TABLE II: Number of Packets (NoP) overhead and Energy
Consumption (EC) due to periodic beacons

Beacon
interval

Device 1 Device 2
NoP EC NoP EC

1.02 ms 10743 6.88 mJ 12683 8.12 mJ
2.04 ms 5369 3.44 mJ 6342 4.06 mJ
3.07 ms 3581 2.29 mJ 4229 2.71 mJ
4.09 ms 2686 1.72 mJ 3171 2.03 mJ
5.12 ms 2149 1.38 mJ 2537 1.62 mJ

a period of 45 seconds. We arbitrarily select two devices
and list the values in Table II. Typical WiFi has a beacon
interval of 100 ms. We vary our beacon intervals from 1 ms
to 5 ms. As expected, the number of packets decreases as
we increase the interval. With lower intervals, although the
network gets congested (12683 packets), the devices get the
latest information about the others, implying the existence of
a tradeoff. It may be noted that the difference in the number
of packets in the devices is because the devices may enter
the network on different time instants. Moreover, the energy
consumption is proportional to the number of beacon packets.
We consider the packets of size 32 B while calculating the
energy consumption. In the worst case, the devices need 8.12
mJ. We infer from these observations that we need to set the
beacons such that we consider minimizing the energy and
network resource consumption while maintaining the latest
information of the devices in the network.

Overall Latency: We define this as the delay endured by an
SN to get back the result after offloading its task to an FN.
It consists of the sum of the time needed for transferring the
entire task to an FN or the cloud, the processing time, and the
time to get back the results. Figs. 2(a) – 2(b) shows the overall
latencies endured in cases when there are 100 and 500 FNs
with SNs ranging from 200 – 1000 and compares HD-Fog,
Traditional Fog, and Cloud Computing schemes. Although
Fog Computing executes faster than Cloud Computing, on
average, we observe a further 30% reduction in latency in the
case of HD-Fog. We attribute this reduction of latency in the
case of HD-Fog to the parallel execution of sub-tasks. On the
other hand, traditional Fog Computing schemes sequentially
perform all of the subtasks on the same FN. We further notice
a proportionate increase in latency in all the 3 cases as the
number of SNs increases. To get a better insight, we break the
overall latency into Transmission and Processing Latencies,
respectively. As the result is a single packet, we discard its
transmission time and only focus on the transfer of the tasks.

Transmission Latency: We define this as the time needed for
sending the data from an SN to an FN. For our simulation,
we consider the Shannon Capacity value to determine the
transmission data rate. As shown in Figs. 2(c) – 2(d), as the
Cloud is situated far away from the SNs, it takes a higher time
to reach the destination and get the processing done, which
dominates the overall latency. In the case of HD-Fog, an SN
can offload the data to any FN within its RAN range. The
same may not hold in the case of Fog Computing schemes
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(a) 100 Fog Nodes (b) 500 Fog Nodes

(c) 100 Fog Nodes (d) 500 Fog Nodes

(e) 100 Fog Nodes (f) 500 Fog Nodes

Fig. 2: Latencies endured by SNs in case of Traditional Fog
Computing, Cloud Computing, and HD-Fog schemes

as the SNs generally lock the nearby FNs for their tasks,
reducing the available number of processing cores. In HD-Fog,
on transferring a task to an FN, it further redistributes the sub-
tasks among other FNs, which increases the transmission time,
compared to the Traditional Fog Computing scheme.

Processing Latency: We define this as the time needed for
executing the tasks offloaded to the FNs and Cloud by the
SNs. The cloud has much higher computation capability than
the FNs due to which we see minuscule processing time while
simulating the Cloud Computing scheme in Figs. 2(e) – 2(f).
However, we observe that HD-Fog demonstrates a reduction
of over 20% in precessing latency than the Traditional Fog
Computing scheme due to the introduction of parallelism. We
present the impact of the weights on processing delays in
Fig. 3. We strictly offload the computation to the fog layer
when ωui ≥ 0.6. Interestingly, we observe a stable pattern
(averaged over 30 iterations each) and similar delays to that
in Figs. 2(e) and 2(f). We attribute the stability to the SNs
choice of offloading the tasks rather than executing locally. We
also observe that the processing time improves as the number
of FNs increases. Intuitively, we attribute this behavior to the
availability of a larger number of free processing cores.

We observe that there exists a tradeoff between the trans-
mission and processing delays. HD-Fog involves transferring

Fig. 3: Processing delay with changing weights

(a) 100 Fog Nodes (b) 500 Fog Nodes

Fig. 4: Comparison of Energy dissipated by SNs in case of
Traditional Fog Computing and HD-Fog schemes

relevant data for sub-task offload, increasing the cumulative
transmission time. However, the parallel execution in HD-Fog
significantly reduces the processing time in comparison to the
traditional Fog Computing scheme, resulting in lower overall
delays. This compensates for the increase in the transmission
time. However, HD-Fog necessitates reliable communication
links. We plan to extend this work by making HD-Fog com-
pliant under constrained conditions.

Energy Dissipated: This is the energy required by the SNs
to offload their tasks to the FNs. Since we assume that the
FNs have an unlimited supply of power, we focus only on the
energy spent by the SNs. Figs. 4(a) –4(b) compares the energy
dissipated in case of HD-Fog and Traditional Fog Computing
scheme. We observe that the SNs in the case of HD-Fog need
over 32% less energy to get the jobs done than the traditional
Fog Computing schemes. This reduction is because, in HD-
Fog, the SNs can offload to any nearby FN. This FN then
redistributes the subtasks to the appropriate FNs. Traditional
FNs need the SNs to select the destination FNs for the entire
task. An increase in distance, as well as computation for the
selection of FNs increases the energy consumption.

Power Consumption: We observe the power consumption by
an FN while executing a task. The power consumption mostly
depends on activities, such as Data Forwarding, Computation,
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(a) Traditional Fog (b) HD-Fog

Fig. 5: Comparison of Power Consumption by FNs in case of
Traditional Fog Computing and HD-Fog schemes

Fig. 6: Speedup with varying number of FNs and SNs

and Data Storage. Since HD-Fog only forwards and stores
sub-tasks, we mainly focus on computation requirements. We
observe in Fig. 5(b) that in the case of HD-Fog, the maximum
power consumed is less than 30.0mW , and in the case of Fog
Computing in Fig. 5(a) is more than 50.0mW . Roughly, the
power consumption in HD-Fog is less than Traditional Fog
Computing schemes by over 44%. We attribute this reduction
to the distribution and parallel processing of the subtasks. As
subtasks need fewer CPU cycles, it allows the FNs to operate
only for small durations leading to less consumption in power.

Speedup: The speedup is the ratio of the time needed to
perform the operations sequentially to that on operating the
same in parallel. Fig. 6 illustrates the speedups in case of
using 100, 250, and 500 FNs on 200 – 1000 SNs. As the
overall latency in Figs. 2(a) – 2(b) of HD-Fog demonstrates
significant savings in time, we observe the same reflection in
the speedups. It is interesting to see that the speedups are
proportionate as the number of SNs increases. However, the
absolute value reduces, which dictates the need for determining
the appropriate number of FNs with respect to the number of
SNs, which we plan to address this in our extended work.

V. CONCLUSION

In this work, we proposed a horizontal task distribution archi-
tecture. We demonstrated HD-Fog as a distributed scheme for
the parallel processing of tasks from IoT sensors. Sophisticated

optimization techniques usually add computational overheads
on the resource-constrained FNs and IoT SNs and take high
time to converge. Thus, we formulated a greedy solution based
on Queueing Theory and reliability. We also presented how
HD-Fog outperforms Traditional Cloud and Fog Computing
schemes with respect to latencies, and power consumptions.
Although due to redistribution of sub-tasks, we observed an
increase in the transmission latency in HD-Fog, the overall
delay is less due to the reduction in processing latency as a
result of the induced parallelism leading to promising speedup
values. We conclude that HD-Fog is an undeniable solution
for hard real-time operations. In the future, we plan to extend
this work by developing methods for overcoming issues due
to FN failures midway during executions.
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