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Abstract—In this paper, we propose a fog-enabled federated
learning framework – FogFL – to facilitate distributed learn-
ing for delay-sensitive applications in resource-constrained IoT
environments. While Federated Learning (FL) is a popular
distributed learning approach, it suffers from communication
overheads and high computational requirements. Moreover,
global aggregation in FL relies on a centralized server, prone
to malicious attacks, resulting in inefficient training models. We
address these issues by introducing geospatially placed fog nodes
into the FL framework as local aggregators. These fog nodes are
responsible for defined demographics, which help share location-
based information for applications with similar environments.
Further, we formulate a greedy heuristic approach for select-
ing an optimal fog node for assuming a global aggregator’s
role at each round of communication between the edge and
cloud, thereby reducing the dependence on the execution at the
centralized server. Fog nodes in the FogFL framework reduce
communication latency and energy consumption of resource-
constrained edge devices without affecting the global model’s
convergence rate, thereby increasing the system’s reliability.
Extensive deployment and experimental results corroborate that,
in addition to a decrease in global aggregation rounds, FogFL
reduces energy consumption and communication latency by 92%
and 85%, respectively, as compared to state-of-the-art.

Index Terms—Internet of Things, Fog Computing, Federated
Learning, Communication latency, Energy Consumption

I. INTRODUCTION

The distributed learning approach, Federated Learning (FL),
enables IoT devices to learn an Artificial Intelligence (AI)
model collaboratively without exposing local data. As this
learning approach “brings the code to the data, instead of
the data to the code”[1], FL enhances data privacy. However,
conventional FL techniques suffer from the following chal-
lenges: 1) Communication overhead due to the continuous
exchange of model data among the plethora of edge devices
and the cloud [1]. Poor network connectivity further increase
this challenge by inducing higher latencies, 2) Sophisticated
computation routines necessary for training mandate the need
for devices with high-performance configurations [2]. How-
ever, the edge devices in the IoT system are usually resource-
constrained concerning computation power, storage, and en-
ergy, and 3) Primary dependency on a centralized entity in
each epoch. Such centralized entities are vulnerable to issues
related to bottlenecks and single point of failure, which results
in inefficient global model [3]. Due to these challenges, the
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Fig. 1: Overview of the proposed FogFL framework.

FogFL model’s deployment in the resource-constrained IoT
environment mandates the need for a distributed architecture
and strategic global aggregation routines.

In this work, we propose and implement a fog computing-
based distributed FL framework – FogFL – for resource-
constrained IoT environments. As shown in Fig. 1, we consider
the geospatial placement of the resource-rich fog nodes for
partially aggregating the locally updated models from the edge
nodes present within its vicinity. We assume that the devices
use radio access network (RAN) technologies such as WiFi for
establishing communication among one another. After a cer-
tain number of communication rounds and local aggregations
among the edge and fog nodes, the cloud selects an optimal fog
node for global aggregation. The introduction of fog nodes in
the device-to-cloud continuum facilitates the FL framework by
reducing the possibility of bottlenecks and global aggregations
at each round. Such reduced collection, results in a decrease
in communication latency and energy consumption of the
edge devices operating in IoT environments. Furthermore, it
increases the system’s reliability by reducing the dependency
on a centralized entity at each epoch. It also ensures location-
aware training of models, explicitly meant for only a subset
of edge devices.

Example Scenario: For illustration, consider an irrigation
scheduling application in agricultural fields as shown in Fig.
1. Each edge node collects data from the deployed sensors (soil
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TABLE I: Comparison of FogFL with existing state of the art

Research Work Architecture Communication
Overhead

Energy
Consumption

Global Aggregator

McMahan et al. [2], Konečnỳ et al. [4] Cloud-based Yes No Fixed
Xu et al. [5] Cloud-based Yes Yes Fixed
Mills et al. [6], Wang et al. [7] Edge-based Yes No Fixed
Tran et al. [8] Edge-based Yes Yes Fixed
Kim et al. [3] Edge-based Yes No Not Fixed
Liu et al. [9], Abad et al. [10] Cloud-Edge-based Yes No Fixed
FogFL (Proposed) Fog-based Yes Yes Not Fixed

moisture, temperature, humidity, and others) from a particular
field. These fields vary in demographics and topology, and
each edge device updates its local model using the on-device
local data. The edge devices forward these local models
to the fog nodes within its vicinity (geospatially), which
perform local aggregations. After a certain number of local
aggregations, the cloud server selects an optimal fog node that
interacts with other fog nodes to update the model globally.
This process continues until an efficient irrigation scheduling
model is learned globally in that area.

A. Motivation

FL entirely depends on a centralized entity for selecting
participants, device configuration, and evaluation of the global
aggregation at each epoch [1], which opens the scope for bot-
tlenecks and issues about the single point of failure. Such con-
ditions often lead to distortion of the global model [3]. More-
over, FL uses additional computation in modern smartphones
with high-performance configurations to reduce communica-
tion rounds during model training, which is infeasible for
resource-constrained edge devices [2]. On the other hand, since
FL offers multiple advantages over the traditional distributed
learning approaches such as the use of non-independent and
identically distributed (non-IID) training data, minimum data
transmission from clients, and privacy protection [2], it acts
as a motivation for our work. Fog computing [11], [12] at
the edge network is an optimal solution in the IoT system
to alleviate the problems mentioned above. Therefore, we
design FogFL intending to reduce the frequency of global
aggregations, communication cost, and energy consumption
of resource-constrained edge nodes. Additionally, while most
of the current research focuses on the convergence time of
FL instead of reliable global aggregation, FogFL increases the
FL framework’s reliability without compromising the model’s
accuracy.

B. Difference of FogFL from existing solutions

In the edge computing-based IoT environment, FL requires
multiple edge nodes as participants that download the global
model and update it based on local data, at each iteration. The
edge nodes then upload the locally updated model to the cloud,
responsible for the global aggregation of the locally updated
models from each client edge node [2]. Next, the globally
updated model is stored in the cloud and send to all the edge
nodes, which is then used as the starting point by each client
for the next round and this process is repeated until the global
model reaches the target accuracy. Existing research works

implement FL framework by placing the central server either
at the cloud or edge. Cloud-based FL framework access more
clients but faces high communication overhead and latency
while edge-based FL framework faces efficient communication
with less number of clients [9].

The proposed FogFL framework differs from the cloud-
based and edge-based FL framework primarily by employing
the fog nodes into the FL framework as local aggregators and
a variable global aggregator node at each round. Moreover,
in FogFL each global aggregation is executed after each
ε number of local aggregations of total N communication
rounds, instead of executing at each round which helps to
reduce the communication cost in the proposed framework
than the traditional methods. Further, FogFL differs from
the client-edge-cloud hierarchical architecture by building a
two level architecture without making any centralized global
aggregator node. Additionally, at each N/ε global aggregation
round, a fog node is selected as a global aggregator node based
on the minimum workload and latency than the other fog nodes
which makes the system more reliable than the state of the art.

C. Contributions

We design and implement a fog computing-based FL frame-
work - FogFL - for resource-constrained edge devices. The
FogFL algorithm trains a model in a distributed and decen-
tralized fashion without depending on the cloud server to
complete an epoch. We exploit the fog computing paradigm
for computation, storage, and network resources for serving
on-demand IoT applications. Towards this, the primary con-
tributions of this work are as follows:
• FogFL framework: We design and implement the FogFL

framework to reduce communication overheads while
facilitating a decentralized and distributed FL framework
across the resource-constrained edge devices. To reduce
the possibility of issues due to the single point of failure,
we design FogFL without depending on a centralized
global aggregator.

• Variable global aggregator node: We formulate and
adopt a greedy heuristic strategy to select an optimal
global aggregator fog node at the end of an epoch to
increase the reliability of the system.

• Evaluation: Through extensive evaluation of the imple-
mented FogFL system as well as real-world emulation,
we present a discussion based on the test accuracy,
communication latency, and energy consumption of the
edge devices. We also present a comparison of FogFL
with existing state-of-the-art FL frameworks.
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II. RELATED WORKS

As mentioned in Section I-B, FL is widely categorized as: (a)
cloud-based FL and (b) edge-based FL. In cloud-based FL,
research works (e.g., [4], [5]) proposed algorithms to reduce
communication cost using data compression technique and
proposed a resource aware FL framework, respectively. How-
ever, the cloud-based FL framework suffers from a communi-
cation overhead, which reinforce edge-based FL frameworks
using limited number of clients.

In edge-based FL, Wang et al. [7] theoretically analyzed
the convergence rate of distributed gradient descent, and de-
termined the global aggregation frequency to reduce resource
consumption. Wang et al., [13] integrated Deep Reinforcement
Learning and FL techniques with mobile edge computing
(MEC) and proposed an Edge-AI framework to optimize the
MEC, caching, and communication. In the same context, Mills
et al. [6] adopted Adam optimization-based FedAvg, and novel
data compression to reduce the convergence rounds. These
researches mainly focused on minimizing convergence time
without considering the uncertainty of the wireless network,
energy limitation of the end-nodes, and local data sizes. To
address these lacunae, Tran et al. [8] evaluated FL over
wireless networks considering these limitations. Kim et al.
[3] proposed a blockchain-based federated learning approach,
where the local updates are accumulated in the blockchain.
On the other hand, [9], [10] proposed a client-edge-cloud
hierarchical FL system to reduce communication cost than
traditional FL.

Synthesis: From the above discussions, we notice that most
of the existing literature focuses on designing novel FL frame-
works with probable convergence time, using a centralized
aggregator node, which creates a lacuna in securing the aggre-
gator’s vulnerability of issues due to the single point of failure.
Further, there are limited research works on implementing
FL for applications using resource-constrained IoT devices.
We propose FogFL to address these issues, while reducing
communication latency and energy consumption, without con-
sidering the centralized entity for global aggregation. In Table
I, we summarize the fundamental difference of FogFL with
the existing works.

III. SYSTEM ARCHITECTURE

In this section, we describe the FogFL framework and for-
mulate a greedy heuristic approach for selecting the global
aggregator fog node at each round.

A. System Model

We consider K edge nodes as clients, F fog nodes as regional
server and responsible for both local aggregation and global
aggregation, and a cloud server as coordinator node. The edge
nodes of a particular region communicate with the regional
fog node using a wireless channel interface, and the fog nodes
communicate with each other via a dedicated wireless channel,
where the number of edge nodes is greater than the number
of fog nodes (K > F ). The set of geographically closed edge
nodes K map to the set of fog nodes F with many-to-one
mapping. All the important key notations used to describe the

TABLE II: Key Notations

Notations Description
K Total number of edge devices or clients
F Total number of fog nodes
C Fraction of clients selected in each round, C ∈ (0, 1)
M Selected clients at each round i.e. M = dC ·Ke
Dk Data sample size at client or edge node k
nk Number of data samples i.e. nk= |Dk|
s Model size across all clients
uk Number of local updates at edge node k
τ1 Datarate across edge nodes
τ2 Datarate across fog nodes
qf Total number of clients associated with a fog node
z1 CPU cycles for training on data sample Dk

z2 CPU cycles for local aggregation of local model
ρek CPU cycle frequency at kth edge node
ρfj CPU cycle frequency at jth fog node
df Distance between two fog node
de Distance between an edge and its associated fog node
δ′i,j Edge to fog communication delay for ith global and jth

local aggregation round
λi Fog to fog communication delay across ith fog node
Ωi Workload at ith fog node
G Global aggregator node
N Total number of communication rounds for training
ε Number of local aggregation rounds
T Deadline time to perform download, update and upload

for a client
V Total number of successfully attempted clients

system are listed in Table II. Each round of FogFL framework
comprises six phases – (a) selection, (b) configuration, (c)
local update, (d) local aggregation, (e) global aggregation,
and (f) reporting. At the beginning of each round, the cloud
node selects and configures a fraction of C ∈ (0, 1) clients.
The selected clients M = dC ·Ke locally update the model
parameter w. We assume the local dataset D1,D2, ...,DK
across K edge nodes follow the non-IID and unbalanced
property. A training data sample a ∈ Dk for client k ∈ K
consists of two parts (Xa, Ya), where Xa denotes the input
vector, and Ya denotes the corresponding desired output. The
loss function across client k for each data sample a ∈ Dk is
represented as la(Xa, Ya, w) or la(w). The local loss function
across each client k is formulated as

Lk(w) =
1

nk

∑
a∈Dk

la(w), (1)

where nk = |Dk| and local accuracy 0 ≤ θ ≤ 1, which is
upper bounded by O(log 1

θ ) [8]. Each client k updates the
local parameters wk as follows:

wk(t) = wk(t)− η∇Lk(wk(t, Bk)), (2)

where t = 0, 1, 2, ..N denotes the iterations, Bk denotes the
mini-batch size and η ≥ 0 is the learning rate. Unlike FL [2],
we consider the number of local updates uk as follows:

uk =
Eknk
Bk

ekmkPk
Jk

, (3)

where device conditions such as residual energy ek, available
processing memory mk, available CPU capacity Pk, and
number of jobs running on device Jk are considered with
the number of local examples nk, training passes Ek, and
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Algorithm 1 FogFL Algorithm

INPUTS: K, C,F , ε,N
OUTPUT: w̃(t)
PROCEDURE:

1: for each round t = 1, 2, ..., N do
2: Select C fraction of clients where C ∈ (0, 1)
3: Initialize wk(t) at each selected client k ∈ K
4: for each fog f ∈ F in parallel do
5: for each client k ∈ K in parallel do
6: Calculate local updates wk(t), uk times using

Equation (2)
7: end for
8: Calculate local aggregation wf (t) using Equation

(4)
9: end for

10: if t is an integer multiple of ε then
11: Select global aggregator node G
12: Calculate global parameter w̃(t) using Equation (5)
13: end if
14: end for

mini-batch size Bk across kth client. After uk local updates,
all the client nodes under each fog node f ∈ F send the
updated parameters to the adjacent fog node f to evaluate the
local aggregation. The local aggregation parameter wf over
tth epoch is calculated as follows:

wf (t) =

∑qf
k=1 nkwk(t)

nf
(4)

The number of clients managed by fog node f is denoted by
qf =

∑K
k=1 xf,k, where xf,k ∈ {0, 1} and nf =

∑qf
k=1 |Dk|.

After ε rounds of selection, configuration, local update, and
local aggregation operations, the cloud server selects a fog
node as a global aggregator G ∈ F among all the fog nodes
based on two parameters latency and workload to perform the
global aggregation. The global aggregation parameter w̃(t) is
evaluated by taking the average of local aggregation parameter
wf (t) from each fog f which is defined as follows:

w̃(t) =

∑F
f=1 wf (t)

F
(5)

In the next step, the global aggregator node G circulates
the final model among all fog nodes and stores the final
model in a cloud server for the next round of communication.
FogFL seeks to optimize the global parameters and repeats
this process until the global model reaches the target accuracy
of 0 ≤ Φ ≤ 1. The steps of the FogFL framework are
presented in Algorithm 1. We consider uk local updates and ε
local aggregations before performing one global aggregation.
Therefore, FogFL executes total N/ε global aggregations for
total N/ε× ε ' N iterations.

B. Global Aggregator Node Selection

In each round, the cloud server selects a global aggregator
node G ∈ F based on the two parameters workload and
communication latency among all the fog nodes.

1) Workload Parameter: For each fog node i ∈ F , work-
load Ωi(t) denotes the data processing request in bits coming
from the associated clients at tth epoch which is formulated
as follows:

Ωi(t) =

K∑
k=1

xi,ks, ∀i ∈ F , (6)

where xi,k ∈ {0, 1} is a binary variable, denotes the asso-
ciation of kth client with the ith fog node and s denotes the
locally updated model size which is assumed to be same across
all clients.

2) Communication Latency Parameter: Each one-hop link
between the ith and jth fog node has the transmission

delay λTri,j (t) = s
τ2

and propagation delay λPri,j (t) =
dfi,js

c ,
∀i, j ∈ F , i 6= j, respectively, where we consider the model
size s and datarate τ2 are same at all fog nodes, dfi,j denotes
the distance between the ith and jth fog nodes, and c denotes
the speed of light. The processing delay at fog node i ∈ F
is λCi (t) =

∑K
k=1 xi,k

z2
ρfi

, where z2 denotes the number of

CPU cycles required for processing model size s and ρfi
denotes the CPU frequency of the ith fog node. Inspired by
the work of Misra et al. [14], we consider the task arrivals
at a fog node i ∈ F follow Poisson process, and is defined
as γi =

∑K
k=1 xi,k. We assume that each fog node i ∈ F

follows M/M/1 queuing model, and calculate queuing delay
as λquei (t) = 1

µi−γi , where µi denotes the service rate of the
ith fog node. Therefore, the total delay across the ith fog node
at tth epoch is defined as follows:

λi(t) = λDi (t) + λCi (t) + λquei (t), (7)

where λDi (t) = max(λTri,j (t) + λPri,j (t)), ∀i, j ∈ F , i 6= j. In
each round, the selection of the global aggregator node G ∈ F
is determined by selecting a fog node i ∈ F having minimum
workload Ωi(t) and delay λi(t). So, the utility function Ui of
the ith fog node is defined as follows:

Ui = αλi(t) + (1− α)Ωi(t), ∀i ∈ F , (8)

where constant α is used to control the relative importance
of the workload and delay, respectively. We formulate an
optimization problem to find a fog node as the global ag-
gregator node which aims to minimize the utility function Ui,
i ∈ F subject to minimum latency and workload constraints.
Mathematically, we formulate our problem (P1) as follows:

arg min
i ∈ F

Ui (9a)

s.t. λi(t) ≤ λmax, ∀i ∈ F , (9b)
Ωi(t) ≤ Ωmax, ∀i ∈ F (9c)

where Equation (9a) ensures that the maximum delay at a fog
node in the fog network should not exceed a threshold λmax.
Equation (9b) ensures that the maximum workload allowed at
a fog node does not exceed the threshold Ωmax. In this paper,
we solve the optimization problem in Equation (9) using a
greedy heuristic approach, as shown in Algorithm 2. The result
in Fig. 2 manifests the frequency of selection of different fog
node as a global aggregator node at each round. It ensures
that the proposed greedy heuristic approach brings dynamicity
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Algorithm 2 Global Aggregator Node Selection

INPUTS: F ,Ωmax, λmax
OUTPUT: G
PROCEDURE:

1: for each fog i ∈ F do
2: Calculate workload Ωi(t) using Equation (6)
3: for each fog j ∈ F and i 6= j do
4: Calculate latency λi(t) using Equation (7)
5: end for
6: if Ωi(t) ≤ Ωmax and λi(t) ≤ λmax then
7: Calculate Ui using Equation (8)
8: end if
9: end for

10: G = arg mini∈F Ui

Fig. 2: Histogram of Global aggregator node selection

in the selection process by selecting different fog nodes with
minimum workload and latency at each round. However, in
worst case if no fog nodes meet the workload and latency
constraints, the cloud server will take the responsibility to
do the global aggregation. The worst case complexity of the
Algorithm 2 is O(F (F − 1)) ' O(F 2).

Lemma III.1. Problem P1 is a convex optimization problem.

Proof. We convert the multivariate function Ui(λi(t),Ωi(t)) =
αλi(t)+(1−α)Ωi(t) to univariate and represent it as g(α) =
Ui(λi(t),Ωi(t)) = αλi(t)+(1−α)Ωi(t). For any two variables
x, y ∈ R, g(ψx+(1−ψ)y) = (ψx+(1−ψ)y)λi+(1−(ψx+
(1−ψ)y))Ωi = ψg(x)+(1−ψ)g(y). Since g(ψx+(1−ψ)y) =
ψg(x) + (1−ψ)g(y), g(α) is an affine function. Considering
the bounds of its convexity, we conclude that Ui(λi(t),Ωi(t))
is a convex function.

IV. SYSTEM ANALYSIS

In this section, we analyze the proposed FogFL framework
based on: (a) delay, (b) energy consumption of the resource-
constrained edge nodes, and (c) reliability.

A. Delay Model

The federated learning time is a function of both the com-
putation and communication time [8]. The computation time
depends on data size and execution time during local pro-
cessing. On the other hand, the communication time depends

on the network channel bandwidth and distance between the
participating nodes. Therefore, the computation delay of the
kth edge node is evaluated as δCk = z1

ρek
, where z1 and

ρek denotes the CPU cycles for data Dk and CPU cycle-
frequency of the kth edge node, respectively. We assume that
the model size s and the datarate τ1 are same for all the edge
nodes. Therefore, the uplink transmission delay δTk = s

τ1
is

constant throughout the system. The uplink propagation delay
of the kth edge node is calculated as δPk =

dek,fs

c , where
dek,f denotes the distance between the kth edge node and its
corresponding fog node f ∈ F , and c is the constant denoting
the speed of light. Moreover, the transmission and propagation
delays of downlink communication can be evaluated using the
same approach. However, as per the research of Tran et al.
[8], the downlink transmission time is negligible compared
to the uplink transmission time (uploading time) due to the
high downlink bandwidth and transmission power of the
high-performance configuration fog nodes than the resource-
constrained edge nodes. We assume that FogFL executes ε
number of local aggregations before performing one global
aggregation to globally train the model for total N number
of communication rounds. Thus at the ith global and jth

local aggregation round, the total delay at kth edge node is
δi,j,k = (δPk + δTk + δCk ) and total edge to fog communication
delay is computed as δ′i,j = maxk∈K(xi,j,kδi,j,k), where
xi,j,k ∈ {0, 1} denotes the selection of the edge node k ∈ K at
the ith global aggregation and the jth local aggregation round.
For each round, the average delay of the proposed system is
defined as follows:

δ′′ =
1

N

N/ε∑
i=1

ε∑
j=1

δ′i,j (10)

B. Energy Consumption Model

The resource-constrained edge nodes mainly affect the evalua-
tion of the energy consumption. Following the work of Burd et.
al [15], the total energy consumption across K edge nodes at
the ith global aggregation round and the jth local aggregation
round is evaluated as follows Ecompi,j =

∑K
k=1(βk

2 z1ρ
2
knk ×

xi,j,k), where βk, z1, ρek, nk and xi,j,k denote the effective
capacitance coefficient, CPU cycles for data sample Dk, CPU
cycle frequency of kth edge node, number of data samples, and
binary variable, respectively. On the other hand, we adopt the
energy model of Heinzelman et al. [16] to calculate the total
communication energy consumption of the K edge nodes at
the ith global and jth local aggregation round. Mathematically,
Ecommi,j =

∑K
k=1 xi,j,k(Eeleci,j,ks + Eampi,j,k sd

e
k,f ), where Eeleci,j,k

and Eampi,j,k denote the transmission and amplification energies
of the kth edge node, respectively. The s and dek,f denotes
the model size and distance of the kth edge node from the
corresponding fog node f ∈ F , respectively. Thus the average
energy consumption E of the proposed system is, as follows:

E =
1

N

N/ε∑
i=1

ε∑
j=1

(Ecompi,j + Ecommi,j ) (11)
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C. Reliability Model

We analyze the reliability of the system by evaluating the num-
ber of clients who successfully attempt the training process
(local update and upload) within the deadline time. Let Vi,j
denotes the number of successfully attempted clients at each
ith global aggregation round and jth local aggregation round
which is evaluated as

Vi,j =
∑
k∈K

f(xi,j,kδi,j,k − T ), (12)

where f(.) is a unit step function, xi,j,k is a binary variable,
δi,j,k denotes the communication delay across kth client and T
denotes the deadline time (in seconds). We set f(δi,j,k−T ) =
1 when the kth client successfully executes the operations
within deadline T i.e., (δi,j,k − T ) > 0, and 0 otherwise.
Following the work of Yao et al. [17], we evaluate the ratio
of number of successfully attempted clients to the total number
of participants in the full training operation i.e., V/M, where
V =

∑N/ε
i=1

∑ε
j=1 Vi,j denotes the total number of successfully

attempted clients and M =
∑N/ε
i=1

∑ε
j=1Mi,j denotes the

total number of participant, where Mi,j is the number of
participants at the ith global and jth local aggregation round.

V. PERFORMANCE EVALUATION

We evaluate the performance of FogFL using both hardware
prototype and simulation environments. In this section, we
describe each of these setups along with the reference model
and dataset. We also describe the benchmark solution against
which we compare the proposed FogFL framework.

A. Benchmark Solutions

To evaluate the FogFL framework’s performance, we com-
pare it with the FedAvg algorithm [2] and hierarchical FL
framework [10]. Through the FedAvg algorithm, the authors
proposed a decentralized training approach for FL. They used
a central server to perform aggregation at each round after
collecting the local updates from the clients. On the other hand,
compare with another hierarchical client-fog-cloud-based FL
framework (HFL), following the work of [10]. To make
compatible with the proposed framework for comparison, we
implement HFL by employing the fog nodes as small cell base
stations (SBS) and centralized server as macro-cell base station
(MBS). In the subsequent section, we present our observations
concerning delay, energy, and test accuracy.

B. Prototype and Simulation Setup

In prototype setting, we deploy 6 Raspberry Pi devices with
1.5 GHz clock cycle as resource-constrained edge nodes, two
personal computers - one with Intel i5 processor 2.5 GHz clock
cycle, 8 GB RAM and the other with Intel i3 processor 2.0
GHz, 4 GB RAM as fog nodes. These devices communicate
using RAN technologies such as WiFi. We also consider a
system with Intel i5 processor 3.2 GHz, 8 GB RAM, for
assuming the role of a cloud server. The prototype follows
at most 3 Raspberry device connection under each fog node,
connected with the cloud. For FedAvg, HFL and FogFL,

we consider the same configurations for the edge nodes and
servers. However, we exclude the layer of fog nodes in case
of FedAvg. We perform the FL operation at most 10 times for
each of the prototype setting and collect the corresponding
results regarding energy consumption and processing time of
edge nodes during training and incorporate the average results
in the simulation setup.

We mimic the features of the prototype setting and design
a simulation environment for a large number of working
nodes through varying the client fractions, fog nodes and
number of local aggregations using Matlab R2018a. In all
three environments, we randomly distribute the working nodes
within a 5km× 5km coverage area. For all environments, we
design the experiment with the total number of edge nodes K
as 1000 and varying client fractions C as 10%, 20%, and 30%.
Moreover, in the FogFL and HFL frameworks, we experiment
with varying number of fog nodes ν as 0.02 and 0.06 fraction
of total edge nodes, under each client fractions. Moreover, for
simplification, we consider same number of local updates uk
for each edge device k.

C. Reference Model and Dataset

In all three frameworks, we couple the edge nodes with local
datasets to perform on-device training. We conduct our exper-
iment using a multi-layer perceptron (MLP) with two hidden
layers (2NN), where each layer consists of 400 neurons using
the ReLU activation function. We set the hyperparameters
of the MLP model, such as learning rate and batch size as
0.001 and 50, respectively. We train and test the MLP model
on proxy dataset MNIST with 70,000 instances (60,000 for
training, 5000 for testing and 5000 for validation) for the proof
of concept. We consider a non-IID partition of the dataset
across each client following the work of McMahan et al.
[2]. For FedAvg and HFL, we run the experiment for a total
number of communication rounds N = 200. On the other
hand, in FogFL, we perform a total N/ε rounds of global
aggregations, where one global aggregation is performed after
every ε rounds of local aggregations. We present a comparative
study by varying the local aggregation numbers of ε with 10
and 20.

D. Results and Discussions

Using the prototype and simulation environments described in
Section V-B, we present our observations, such as variance in
accuracy, delay, and energy consumption on executing FogFL
with a varying number of clients.
Impact of Multi-Client Parallelism: We analyze the impact
of multi-client parallelism with varying numbers of local
aggregations ε as 10 and 20 for FedAvg, HFL and FogFL
from the accuracy plots as depicted in Fig. 3a and Fig.
3b, respectively. The figures manifest that the global test
accuracy for FogFL and HFL are approximately the same and
outperform FedAvg. From the results, we also calculate the
number of communication rounds to reach the target accuracy
(0.85) for different client fractions in all three frameworks and
listed in Table III. Table III indicates that FogFL demonstrates
significant improvement for C ≥ 0.1 over HFL and converges
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Fig. 3: Test Accuracy vs. Communication Rounds
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Fig. 4: Impact of Different Local Aggregations

TABLE III: Total Number of Global Communication Rounds
for FedAvg, HFL and FogFL

Parameters FedAvg HFL & FogFL
ε = 10 ε = 20

C = 0.1 50 5 3
C = 0.2 25 3 2
C = 0.3 17 2 2

much faster than the FedAvg with reasonable accuracy in each
case of client fractions. It implies that the introduction of in-
termediate fog nodes in FogFL and HFL distributively offloads
the task of aggregations from the central cloud and helps to
converge faster with small number of global aggregations.
Reduction of Communication Latency: We analyze the av-
erage delay at each round of FedAvg, HFL and FogFL for
varying number of local aggregations and fog nodes, as shown
in Figs. 4a and 5a, respectively. The results manifest that
FogFL outperforms the benchmarks for all cases of client
fractions. It occurs due to the employment of intermediary fog
nodes as global aggregator node into the FogFL framework,
which reduces the transmission delay. From Fig. 4a, we also
observe that for both FogFL and HFL with ε > 10 results in
high communication latency in all cases of client fractions. It
implies that the increase in the number of local aggregations
significantly increases the number of communications between
the edge and fog nodes. On the other hand, Fig. 5a describes
that both FogFL and HFL reduces communication latency with
the increase in number of fog nodes. Overall, we conclude that
the proposed framework FogFL reduces delay by 85% and
68% than both benchmarks FedAvg and HFL, respectively, in
all cases of client fractions.
Reduction of Energy Consumption: In the same manner, we
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Fig. 5: Impact of Different Number of Fog Nodes

also analyze the total energy consumption of the edge devices
at each round for all the three frameworks with varying client
fractions, as outlined in Figs. 4b and 5b. The results manifest
that FogFL outperforms the FedAvg and approximately results
same with HFL, in all cases of client fractions. Moreover, in
all three frameworks with the increasing number of clients
C ≥ 0.1, the total energy consumption for each round also
increases linearly. It implies that an increase in the number
of clients enriches the number of operations at each round
and resulting in high energy consumption. Overall, FogFL
reduces the total energy consumption by 92% than FedAvg
and performs equally as HFL, in all types of client fractions.
Based on the results of delay and energy consumption, we fix
the local aggregation ε as 10 for the remaining experiments.
Impact of the Increasing Number of the Fog Nodes: We
analyze the average delay and energy consumption result of
the FogFL algorithm at each round with fog node variations
ν as 0.02 and 0.06 fraction of total edge nodes with local
aggregation ε as 10 under various client fractions, as depicted
in Fig. 5a and Fig 5b, respectively. Both figures manifest that
with the increasing number of fog nodes under each client
fraction, significantly decrease the both metrics. It implies that
the rising number of fog nodes per client fractions substantially
distributes the load among the fog nodes, which results in less
energy consumption and delay per round.
Impact of Performing Fog-Label Global Aggregation: The
FogFL framework is equipped with an optimum global aggre-
gator node selection process, which is designed based on the
heuristic approach. The proposed selection process appoints a
fog node with minimum latency and workload than all other
fog nodes as global aggregator at each round, as shown in Fig.
2. This particular feature introduces dynamicity in the system.
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TABLE IV: Successfully Attempted Clients Ratio at Each
Round During Training for FedAvg, HFL and FogFL

Time (Sec) FedAvg HFL & FogFL
Ratio Ratio

250 0 0.58
1000 0 0.98
22000 0.59 1
23000 0.98 1

Additionally, Fig. 3c shows the test accuracy of different fog
nodes for varying client fractions C = 0.1 and 0.2 with fog
nodes 0.02 fraction of edge nodes. The curve strokes in Fig 3c
denotes the variation in accuracy at each global aggregations
after ε = 10 local aggregations in fog nodes. The figure
manifests that the test accuracy of different fog nodes under
the same client fraction is quite same, due to the distribution
of updated global model among all fog nodes after completion
of each global aggregation round. This ensures that in FogFL,
the damage of any fog node or global aggregator node at a
particular round will not hamper the accuracy of the model.
Moreover, we calculate the successfully attempted client ratio
at each round during training as listed in Table IV. It depicts
that FogFL and HFL take less deadline time than FedAvg
due to the intermediary local aggregation at fog node. These
features conclude that the fog-label global aggregation is much
more efficient than the state of the art.

VI. CONCLUSIONS

In this paper, we designed and deployed the FogFL framework
for resource-constrained edge devices without considering any
fixed central entity as a global aggregator. We achieve this
by introducing geospatially placed fog nodes to collect local
updates and then perform global aggregations in this layer.
Such use of fog nodes also allows slicing and sharing of
models based on the area demographics. Further, we formu-
lated a greedy heuristic approach for selecting an optimum
fog node as a global aggregator at each round, increasing
the system’s efficiency. Through extensive experimental and
simulation results, we presented a comparative study of FogFL
against state-of-the-art solutions. The results show that FogFL
reduces delay by 85% and 68% than both FedAvg and HFL,
respectively, and reduces energy consumption by 92% than
FedAvg. Subsequently, we also analyzed that at different client
fractions with local aggregation number, ε = 10 performs
better than ε > 10.

We intend to extend our work by addressing the client
selection problem and optimizing the training model over the
edge devices to learn the model collaboratively. The selection
of a large number of clients results in bottleneck across cloud
servers due to inconsistent network channel conditions, which
necessitates determining an appropriate group of clients for
learning a large-scale distributed FL.
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