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Abstract—In this paper, we propose a mechanism –DEFT–
to facilitate mobile Internet of Vehicles (IoV) user entities (UEs)
with unit tasks to cooperate among one another and offload their
tasks to nearby fog nodes (FNs)/roadside units (RSUs) in a de-
centralized and fair manner. While existing literature depends on
offloading schemes based on centralized systems, DEFT provides
near real-time computation offloading in a fog-enabled IoV using
a decentralized two-level game-theoretic approach. Further, this
approach allows the UEs to make their own decisions in a
dynamic environment. In the first level, FNs play an Oligopoly
game for determining the price of their services based on their
computation capability and then broadcast the price to the UEs.
Further, based on the price transmitted by the FNs, UEs play a
non-cooperative Stackelberg game to map the offloading among
the user and fog layer. We also ensure that no UE consumes
all of the resources in an FN. Additionally, we prove our
objective function’s convexity and show that the proposed game
always attains the Nash Equilibrium. Through extensive real-
world emulations, we observe that DEFT minimizes the latency
and power consumption, and improves throughput compared to
the existing schemes. In the presence of 40, 80, and 120 UEs,
the overhead for computation in the fog layer is minimized by
70− 75% compared to the local computation overhead.

Keywords—Internet of Things, Fog Computing, Decentralized
Computation Offloading, Dynamic Pricing, Game Theory.

I. INTRODUCTION

V ehicles in an Internet of Vehicles (IoV) environment
comprises of multiple sensors such as accelerometers,

cameras, infrared sensors, and others [1], [2]. These sensors
collect data in different formats, which require complex
operations for making inferences. Further, complex processing
of the collected data is necessary for the IoV user entities
(UEs) to perform local computation. Additionally, these tasks
are required to make real-time decisions for the actuators,
control systems, and other machinery present in the vehicles.
To save local resources and energy in an IoV environment,
offloading the tasks to external platforms such as cloud and
fog computing paradigms prove beneficial [3].

In this paper, we propose a decentralized computation
offloading scheme DEFT, by adopting a game-theoretic ap-
proach for mobile IoV UEs to efficiently and fairly select
fog nodes (FNs) within their proximity. Fig. 1 depicts an
overview of our proposed solution. We consider that the FNs
and the UEs communicate using radio access network (RAN)
technologies. Initially, the FNs interact with one another
to determine a uniform price for their services, based on
their computational capability, storage, and waiting time. To
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Fig. 1: Overview of the proposed scheme DEFT for compu-
tation offloading in mobile IoV environments

achieve this, we formulate an oligopoly game. Further, after
the price is determined, we formulate a Stackelberg game to
select the appropriate FN, where the UEs act as players. We
envision DEFT as a scheme for the UEs to independently
select the FNs without any centralized entity, removing the
possibility of single-point failures.

Computation Offloading [4], [5], is a well-explored pos-
sibility, and the current literature offers multiple solutions
towards offloading the load of performing complex operations
to external platforms, such as the cloud [6], [7]. However,
with the production of sizeable time-sensitive data by the
devices in an IoV network, we may lose the opportunity
to act efficiently and make uninformed decisions. These
issues mandate the need for device-to-device communication-
enabled solution techniques. We select the fog computing
paradigm to minimize the delay incurred [8]. Typically, the
fog nodes/roadside units (RSUs) (in case of IoV) consist
of devices such as switches, routers, gateways, bridges, and
hubs, which are present at the edge of the network. These
devices are usually resource-constrained compared to the
cloud servers and include a varied range of devices. Such
device configurations motivate us to design solutions which
ensure FNs’ availability based on the user’s task and also
consider the distance between them. The selection of the FNs
based on their configuration and distance reduces processing
and propagation delays. Existing solutions rely mostly on cen-
tralized systems, which are vulnerable to single-point failures,
bottlenecks, and malicious attacks. We reduce the possibility
of these threats by adopting a decentralized approach. These
facts act as a motivation to design our fog-based decentralized
architecture and mechanism while accounting for the varying
device configurations. Although the decentralized solutions
add overheads in the network for passing control messages, it
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allows us to realize the autonomy in the devices, particularly
for the FNs, to tailor their configurations and services accord-
ing to the UEs’ requests. To unanimously determine the price
of services from the FNs and decide which UE offloads to
a particular FN, we propose a real-time decentralized game-
theoretic scheme.

A. Why Game Theory?
Compared to the conventional solution methods, game-
theoretic solutions allow its participants (users and fog nodes)
to interact with one another and identify the possible set of
strategies. Game theory also has the feature of maintaining
clarity among the outcomes and follows a discrete nature.
Such traits give us the flexibility of assigning custom rewards.
Further, these salient features enable the devices to be aware
of the system’s rules of engagement, allowing them to make
smart decisions accordingly. Further, in the presence of alter-
native strategies, the participants select the one which renders
the highest benefit. In this work, we consider a set of FNs
offering computational services to the UEs with both parties
acting independently. Moreover, as we designed separate
models for determining the price of the services, based on
the available resources in the FNs and its consumption by the
UEs, game-theoretic solutions are a perfect fit.

In this paper, we primarily aim to address the following
issues: (a) How the FNs set the price for the computation of
the offloaded data? and (b) Based on the price transmitted by
FNs, which FN is selected by the UEs. To enable fairness
among the UEs, we introduce penalties such that they do
not consume all the available resources at an FN. Such
penalties help in ensuring that resources are available for the
other UEs requesting for computational services. The specific
contributions of this work are as follows:
• We propose a decentralized, two-tier scheme, named as

DEFT, for mobile IoV UEs to connect and offload their
tasks to the FNs with ease. The UEs cooperate among
them and offload their tasks to the nearest FNs.

• We formulate an oligopoly game to map the interactions
among the FNs. The FNs then determine the price for
their services, depending upon their residual storage
space, computation capability, and time for which the
tasks wait in the queue.

• We formulate a cooperative Stackelberg game among
the UEs to select the appropriate FNs. These UEs
are capable of dynamically switching among the FNs
whenever there is scope for increasing their utility.

• Extensive simulation of our proposed scheme depicts
that DEFT outperforms in terms of latency, through-
put, and power consumption, compared to the existing
schemes [8], [9].

The remaining of the paper is organized as: we briefly
provide insights towards the existing related researches on
computation offloading in Section II followed by the problem
description in Section III. We then present our observations
while evaluating DEFT in Section IV and finally draw con-
clusions in Section V.

II. RELATED WORK

In this section, we discuss some related research works in
the field of computation offloading in fog and cloud. As the
UEs are resource-constrained and sophisticated applications
run on them, the performance and lifetime of the UEs degrade.

Considering these facts, Lin et al. [10] proposed an offloading
framework, named as Ternary Decision Maker (TDM) to min-
imize the response time and energy consumed. Additionally,
the authors performed real-world applications to evaluate the
performance of TDM. Similarly, Samanta et al. [11] consid-
ered delay-tolerant and resource-constrained mobile devices.
They proposed an adaptive offloading scheme to maximize
the revenue of the mobile edge computing (MEC) scenario.
Further, Chen et al. [5] proposed a centralized computation
offloading problem in the presence of multiple users for a mo-
bile edge cloud computing environment. The authors proved
that the problem is NP-hard and applied a game-theoretic
approach for achieving efficient computation offloading. On
the other hand, from the consumers’ perspective, there exists
uncertainty in cloud services, due to lack of transparency in
the type of services, operational conditions, and quality of
service given by multiple service providers. Emeakaroha et
al. [12] designed a system to improve the trust of consumers
and their trustworthiness in cloud services. They evaluated
the consumers’ trust in cloud services, depending on the use
cases.

Meskar et al. [13] proposed a cloud-based computation
offloading approach to improve the energy consumption of
mobile users. Considering real-time constraints such as job
execution deadlines, user-specific channel bit rates, and com-
petition across shared channels, the authors modeled the
problem scenario as a competitive game. Similarly, to improve
the service quality and performance of mobile edge cloud
computing, Tao et al. [14] proposed an energy minimizing
computation offloading scheme. Further, the authors also
considered the bandwidth capacity at each time slot in their
proposed offloading approach. Zhou et al. [15] transformed
the computation offloading problem into a matching problem
by introducing contracts to maximize the expected utility.
However, the matching problem increases the time complexity
of arriving at an optimal solution. Keeping in mind the
upcoming AI technologies, Zhao et al. [16] proposed an
offloading scheme for fog RANs.

Synthesis: The existing literature provides solution to sev-
eral problems related to offloading in both cloud and fog
computing, such as response time minimization [10], en-
ergy consumption [11], and customer trust [12]. However,
these solutions assume uniformity for the nature of devices.
The proposed decentralized computation offloading scheme,
DEFT, provides solutions to task offloading in the presence of
heterogeneous types of devices (both FNs and UEs). In this
work, we propose a two-level game-theoretic, decentralized
scheme to offload the tasks to the FNs dynamically. The
proposed scheme provides a solution to pricing the services
of the FNs. These prices reflect the resources available at
the FNs. We also ensure that no UE selfishly consumes the
resources in its entirety by imposing penalties. Such penalties
help in maintaining fairness among the devices (both the FNs
and UEs).

III. PROBLEM DESCRIPTION

In this section, we describe our problem scenario and present
the mathematical formulation for the two-tier game-theoretic
approach for offloading the tasks to the fog layer.

A. Problem Scenario
We consider an Intelligent Transportation System (ITS)
scenario, where vehicle-to-vehicle (V2V) and vehicle-to-
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Fig. 2: System Architecture

infrastructure (V2I) communication is possible. Fig. 2 shows
a foglet consisting of FNs connected in the form of a mesh
network. In IoV scenarios, foglets are a set of RSUs within
the same network or the same vicinity. It may be noted that we
refrain from the creation of the foglets to maintain simplicity.
Further, with the mobility of the UEs, they either enter or
exit from these foglets. We assume that the UEs are in a
quasi-static state within the network, such that their tasks get
executed during the time they are present in the foglet. This
assumption allows us to return the results through the same
FN. The type of devices (both UEs and FNs) present vary
from one another in terms of their configurations, which intro-
duces heterogeneity in the problem scenario. Additionally, as
both FNs and UEs communicate through RAN technologies,
we assume that the UEs seamlessly connect to any of the FNs
upon requirement.

Assumptions: The list of assumptions in this work are as
follows:
• We consider that the fog nodes do not distribute the

task execution with the cloud platform. The cloud is
only necessary for storage purposes. We plan to extend
this work by enabling task redistribution among the fog
nodes to facilitate task parallelism.

• Inspired from the works of Lei et al. [17], we assume
that the fog nodes are connected through a strong back-
haul network. This connection among the fog nodes
may follow the same architecture as the works of Fan
and Ansari [18].

B. Problem Formulation

We consider the presence of a set of UEs and FNs in our
IoV scenario. They vary with respect to their computational
capabilities, battery capacity, and nature of tasks. Let U =
{u1, u2, u3, ..., uN } be the set of UEs present in the network.
These UEs have tasks/jobs (Ji) corresponding to each UE,
ui for execution. We represent these tasks using a two-tuple
format as Ji = 〈Ii, Di〉, where Ii is the size of the input data
(such as program codes and input parameters) related to the
task, Ji and Di denote the number of CPU cycles required to
execute the ith task, Ji. The UEs need to assign their tasks to
the FNs in an optimal manner to cope with the time-sensitive
constraint. In this work, we propose a two-tier game-theoretic
approach to offload the FNs.

Let F devi denote the computation capability of each UE,
ui, in CPU cycles per second. The time, T devi required by

them to perform the tasks locally is represented as, T devi =⌈
Di/F

dev
i

⌉
. Further, βi represent the energy consumption per

unit CPU cycle. The amount of energy consumed by the ith
device to perform the task is mathematically represented as,
Edevi = βiDi. Suppose T devmax and Edevmax are the maximum
time required for the completion of a task and the maximum
energy consumed when all the resources of the UE are in use.
We compute the overall overhead of the device for performing
the task locally as a sum of the normalized time and energy.
Inspired from the works in [19], we add weights wdevit and
wdevie in our formulations. Therefore, the overhead (Zdevi ) for
local processing is:

Zdevi =

⌈
wdevit

T devi

T devmax

+ wdevie

Edevi

Edevmax

⌉
(1)

where (wdevit , wdevie ) ∈ (0, 1) and wdevit + wdevie = 1. These
weights represent the preference of the UEs. Based on their
current state and requirement, these weights are determined.
For instance, when the UE has a low battery, it sets a higher
wdevie to save more energy. On the other hand, when the
UE runs some time-sensitive application (video streaming),
it sets a higher wdevit value to save time. We determine these
weights based on different power saving modes. For instance,
the value of wdevie is set to 1, when the battery is deficient and
activate (extreme) power-saving mode. Other values of wdevie
may be varied proportionately to the available battery. Since
wdevie is related to wdevit , we set wdevie = 0, in case of time-
sensitive applications and enter extreme performance mode
(only when the available battery permits). Such methods allow
the UEs to set weights dynamically and switch according to
the operation modes. In summary, these weights enable the
UEs to analyze their status.

Similarly, we compute the overhead for assigning the tasks
to the FNs. Let G = {g1, g2, ..., gM} be the set of FNs.
These devices have different computational capability (F fogj ),
storage space (Sfogj ), and a queue of pending tasks (tbusyj ).
We assume that each FN broadcasts a beacon periodically,
which comprises 〈F fogj , Sfogj , tbusyj 〉. Thus, any UE present
within the proximity of the FN possess these information.
Considering reliable communication links present among
these devices, and assuming that each packet is R bits in
size, the UEs forward the input data parameters of size, Ii
to the FNs when the Shannon Capacity formula is satisfied.
Mathematically, r(R[t], Ptx) = B log2

(
1 + R[t]Ptx

NoB

)
≥ R

where Ptx is the transmission power constraint, B represent
the bandwidth, and the noise factor is denoted by N . The time
required to offload the input parameters by the UE and the
energy consumed during this time is T offj =

⌈
Ii

r(R[t],Ptx)

⌉
and Eoffj =

⌈
PtxIi

r(R[t],Ptx)

⌉
. On successfully receiving the

input parameters, the time required to execute the task is

T fogj =

⌈
Di
F fogj

⌉
. Therefore, considering the maximum time

(including transmission and computation) and energy required
as T fogmaxj and Edevmaxj , the total overhead for the UEs to
execute the task by a FN along with the weight parameters
is mathematically represented as:

Zfogj =

⌈
wdevit

(T offj + T fogj )

T fogmaxj

+ wdevie

Eoffj

Edevmax

⌉
(2)

FN selection by UEs: Due to the limited transmission
range of wireless communication technologies (WiFi in this
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Fig. 3: Service Architecture for a UE

case), the UEs are only aware of the FNs present within
their proximity. The UEs store these FNs’ information in a
hash table on receiving the beacon signals. The UEs use the
configurations of these proximal FNs for finding the hash
functions to use as identifiers. The hash table also has an
added column against each device, which holds binary values
to represent selection for offloading. We illustrate using an
example. We consider a hash table, H . The FN with the least
overhead is assigned the value as 1, and the value as 0 for
other FNs. The FN with the value 1 is selected, and the UE
offloads their task. Mathematically:

Hi[j] =

{
0, if task is not offloaded
1, if task is offloaded

(3)

where, j in Hi[j] is the identifier for the jth FN present
within the proximity of the ith UE. Since the result that
returns to the UE is much smaller in size than the input
parameters, we assume that the response time is negligible.

Service Architecture: In the proposed decentralized compu-
tation offloading scheme, each of the UEs possesses a service
architecture. Fig. 3 illustrates the step-by-step representation
of the service architecture of UE. Step 1 computes the
overhead for both local and remote computation and decides
whether to offload the collected data or process it locally. On
the other hand, during the local computation, the UE transfers
the task to its local processor for execution. Further, in Step
2, if the decision is to offload the data, the UE selects an FN
based on the charged price. Upon selection of the FN, the UE
updates the hash table H, as mentioned in Section III-B. In
Steps 3 and 4, the UE transmits the task to the corresponding
FN for execution. Finally, the UE receives the result from the
FN after execution.

C. Game Formulation
We propose a cooperative game-theoretic approach to decide
when, how, and to whom the UEs offload the tasks. The
decisions are a result of strategies from two stages. At the
inception level, the FNs play an oligopoly game and decide
upon a price for their resources, based on their computation
capability, Fg , available storage space, Sg , and the time
required by the FN to complete the execution of the tasks
existing in the queue, tq,gi . As a result of the oligopoly
game, let Pi be the price that the FN gi broadcasts to the
UEs. On receiving the price Pi from each of the FNs within

their proximity, the UEs start interacting with the other UEs
present within their transmission range. Thereafter, we map
the interaction among the UEs as a cooperative Stackelberg
game. As an outcome of both the games, the UEs start
offloading data in an optimized manner.

Suppose, the per unit computation cost at the ith fog node
is Cgi and the computation capability is Fgi , such that Fgi ≤
Fmaxgi , where Fmaxgi is the maximum achievable computation
power in CPU cycles per unit time. To characterize each of
the FNs, we define the following characteristics:

Definition 1. Residual Storage (Sresgi ): The normalized resid-
ual storage available at the ith FN is the ratio of the
storage space available at time instant, t, coupled with a
factor α, such that 0 ≤ α ≤ 1, to the maximum available
storage. The value of α is the weight determined by the
state of the respective FN to show the frequency of storage
usage over time. The precise available storage space at
any particular time instant is challenging and is statistically
analyzed. Mathematically, Sresgi =

⌈
αStgi/S

max
gi

⌉
, where T is

the total number of time-slots. Further, the available storage
space and the maximum storage space of the ith FN during
the time slot t is represented by Stgi and Smaxgi .

Definition 2. Normalized Computation Capability (Fnormgi ):
The normalized form of the computation capability of the ith
FN is the ratio of the present computation capability, Fgi ,
and the maximum achievable value, Fmaxgi . Therefore, the
normalized computation capability is Fnormgi =

⌈
Fgi/F

max
gi

⌉
.

Definition 3. Waiting Time (twaitgi ): The normalized waiting
time is the ratio of the summation of the time required for
the execution of each of the tasks in the queue of ith FN and
the maximum tolerable time, tmaxq,gi . Therefore, the value of
Fnormgi reduces to a certain extent. Mathematically, twaitgi =⌈
tq,gi/t

max
q,gi

⌉
.

Proposition 1. The price that any FN charges to endure for
the execution of a task assigned to it by some arbitrary UE is
an estimation of the cost function of the residual storage Sresgi ,
computation capability Fnormgi , and the waiting time twaitgi .
Therefore, the price charged by an FN is mathematically
represented as,

Cgi = Cgi
Fnormgi

Sresgi t
wait
gi

(4)

where, Cgi is the per unit computation cost for the ith FN.

Please refer to the Supplementary file for the justification.
Therefore, the cost function is mathematically represented as:

Cgi = Cgi

⌈
FgiS

max
gi tmaxq,gi

αStgiF
max
gi tq,gi

⌉
(5)

We map the strategic interactions among the FNs using a
game-theoretic approach, where the FNs act as players. These
players resolve their price for the services, based on their
state. The devices interact among themselves as they have
incomplete information about one another. Therefore, we map
these interactions among the FNs with an oligopoly based
game-theoretic framework.

Definition 4. We compute the utility function of the ith

FN with respect to the utilities of other devices from the
difference of the price set by the FN, Pgi and the cost re-
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quired for performing the allotted task, Cgi . Mathematically,
u(gi, g−i) = Pgi − Cgi .

Algorithm 1 Price Set by Fog Nodes

INPUTS: Sresgi , Fnormgi , and twaitgi .
OUTPUT: Pgi : Price for resources of the fog nodes.

1: for i = 1 to M do .M : Total no. of fog nodes
2: Compute cost price, Cgi , according to Equation (5)
3: Determine Pgi , and share among other fog nodes
4: end for
5: for i = 1 to M do
6: Compute utility according to Definition (4)
7: Maximize utility by solving Equation (7)
8: end for
9: The ith FN set final price, Pgi .

Theorem 1. The utility function of the ith fog node is concave
in nature and represented as u(gi, g−i) = Pgi − Cgi .

Please refer to the Supplementary file for the proof.

Theorem 2. There exists an equilibrium condition for the
utility function of the ith FN, considering the residual storage,
computation capability, and price set by the ith FN as
constant, such that

U(Pgi , Stgi , S
t−1
gi ,C, t∗q,gi) ≥ U(Pgi , Stgi , S

t−1
gi ,C, tq,gi) (6)

Proof: In our problem scenario, we consider a co-
operative dynamic pricing game to set a price among the
FNs for their services. The dynamic price set by these FNs
depends on their utility function, which changes with the
dynamic nature of their configuration states. Therefore, the
optimization function is mathematically represented as,

argmax
tq,gi

(
Pgi − Cgi

⌈
FgiS

max
gi tmaxq,gi

αStgiF
max
gi tq,gi

⌉)
(7)

subject to Pgi ≤ Pmaxgi , Stgi ≤ Smaxgi , tq,gi ≤ tmaxq,gi , Fgi ≤
Fmaxgi , and (Cgi ,Pgi , Sgi , Fgi ,Pgi) > 0.

In order to simplify Equation 7, we apply Lagrangian
function given in Equation 8, where λ1, λ2, λ3, and λ4 are
the Lagrangian multipliers, such that (λ1, λ2, λ3, λ4) ≥ 0.

Lλ = Pgi − Cgi
⌈
FgiS

max
gi tmaxq,gi

αStgiF
max
gi tq,gi

⌉
− λ1(Pmaxgi − Pgi)

+λ2(Smaxgi − Stgi) + λ3(tmaxq,gi − tq,gi)− λ4(Fmaxgi − Fgi)
(8)

Further, to find an optimal solution to the optimization
function, we apply the Karush-Kuhn-Tucker (KKT) condi-
tions [20]. The dual feasibility and complementary slackness
conditions are given in Equations 9 and 10, respectively.

∇tq,giLλ = Cgi

⌈
FgiS

max
gi tmaxq,gi

αStgiF
max
gi

⌉
− λ3 (9)

λi(Yi) = 0, and λi ≥ 0 (10)

Further, Yi represents the constraints of Equation (7), where
i = {1, 2, 3, 4}.

On solving the KKT conditions given in Equations 9 and
10, we obtain the optimal value of tq,gi , where the utility
function attains the maximum value. Therefore, the optimal
waiting time is represented as:

toptq,gi =

√⌈
FgiS

max
gi tmaxq,gi

αStgiF
max
gi

⌉
Cgi
λ3

(11)

Hence, an equilibrium condition exists for an optimal value
of waiting time of the FNs.

After the price for the resources Pgi of the FNs are set,
the UEs U = {u1, u2, u3, ..., un} within a cluster initiate
their decision making process to offload their respective tasks.
Further, any ith FN may serve multiple UEs simultaneously.
However, the selection of the UE who offload first to any
FN is a crucial issue to resolve. To overcome this problem,
we apply the Single Leader Multi-Follower Stackelberg game-
theoretic approach. The UEs that have common FNs in their
vicinity form clusters among themselves to share relevant
information. The UEs only share messages related to the
game. Any other form of critical information or data is not
shared among the UEs to protect the security and privacy
issues. The UE with the higher configuration acts as the
leader, and the other UEs act as followers within that cluster.
The players’ strategy is to bid the price for the resources pui ,
according to the quantity of resources required.

Algorithm 2 Decision Making

INPUTS: Pgi (from Algorithm 1), Ii, and Di.
OUTPUT: Decision to offload or not and to whom to offload.

1: offload flag = 0
2: for i = 1 to N do . N : Total no. of user entities
3: Compute T devi , Edevi
4: Compute Zdevi as in Equation (1)
5: for j = 1 to M do
6: Compute Zfogj as in Equation (2)
7: if Zfogj ≤ Zdevi then
8: Assign overheads in Hi[j] = Zfogj
9: Set offload flag = 1

10: end if
11: if Zfogj ≤ min overhead then
12: Set Hi[j] = 1 and all others 0
13: end if
14: end for
15: end for
16: if offload flag = 1 then
17: Offload task to fog node with Hi[j] = 1
18: end if

Definition 5. Desired Resource (Rui ): The desired resource
is defined as the amount of resource for which the other UEs
present within the FNs’ proximity is not depleted. Therefore,
we attach a penalty factor with the chunk of resources
demanded by that UE. The desired resource of the ith UE
is mathematically represented as, Rui = Ri

(
1 −

∑n
i=1Ri

)
,

where Ri denotes the fraction of resources demanded by ui.

Theorem 3. The presence of the penalty factor
(
1−
∑n
i=1Ri

)
restricts the ith UE from accessing the entire storage space
Rui available to the nearest FN, gi.

Please refer to the Supplementary file for the proof.

Definition 6. Offered Price (Pui ): The amount offered by
the UEs possesses different valuations for the same resource
demanded by them. Therefore, we consider another parameter,
R, which is attached to the normalized amount. Mathemati-
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cally, Pui = R(pui/p
max
ui ), where pui is the amount offered

by the ith UE, and pmaxui represent the maximum amount
possessed by that UE.

Further, we compute the utility function for the UE, ui,
with respect to the other UEs present in the same cluster
using Definitions (5) and (6). Therefore, the utility function
of the UE is represented as, Πi(ui, u−i) = Pui +Rui .
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Fig. 4: Utilities for FNs and UEs

Theorem 4. There exists an equilibrium condition for the
utility function of a UE, ui, for a constant amount offered by
the UEs. Mathematically,

U(R∗, P ) ≥ U(R,P ) (12)

Proof: In our problem scenario, multiple UEs demand
for their required resources to the FNs within their proximity.
We map this interaction between the UEs and FNs with a co-
operative dynamic Stackelberg game. Further, the dynamic
bidding of the UEs depend on their utility function, which
vary with the fluctuation in demand. Therefore, the optimiza-
tion function is represented as:

argmax
Ri

R
pui
pmaxui

+Ri

(
1−

n∑
i=1

Ri

)
(13)

subject to
∑n
i=1Ri < 1, pui < pmaxui , and R, pui , Ri > 0.

To simplify Equation 13, we apply Lagrangian function as
given in Equation 14.

Lλ = R
pui
pmaxui

+Ri

(
1−

n∑
i=1

Ri

)
− λ1

(
1−

n∑
i=1

Ri

)
−λ2(pmaxui − pui)

(14)

where λ1 and λ2 denote the Lagrangian multipliers, such
that (λ1, λ2) ≥ 0. Further, to solve Equation 14, we apply
Karush-Kuhn-Tucker conditions [20]. The dual feasibility and
complementary slackness conditions are given in Equations 15
and 16. On solving Equations 14, 15 and 16, we obtain the
optimal value of resources available.

∇RiLλ = λ1

( n∑
j=1,j 6=i

Rj

)
+ 1− 2Ri −

n∑
j=1,j 6=i

Rj (15)

λi(Bi) = 0, and λi ≥ 0 (16)

where Bi represents the constraints of Equation (13) and
i = {1, 2}. The optimal solution obtained is mathematically
represented as:

Ropti =
1

2

(
1 + λ1

n∑
j=1,j 6=i

Rj

)
(17)

Therefore, we conclude that there exists a Nash equilibrium
for the proposed scheme, DEFT.

It may be noted that the FNs in an IoV environment serve
requests from UEs with varying configurations. Some of the
UEs may entirely take up the resources available in an FN.
In such a case, the FNs need to deny service requests from
the other UEs present in the network. The penalty function in
Theorem 3 helps in reducing the possibility of such situations
and ensures fairness among the UEs. Intuitively, this fairness
may cause a contradiction of interest for the price set by the
FNs. However, a Nash equilibrium exists for the proposed
system (Theorem 4), which implies that both the UEs and
FNs are satisfied with the outcomes. They have no affinity
for changing their decisions, which proves the stability of
DEFT.

Algorithm 1 provides a comprehensive view of the price
set by the FNs. Based on the cost function designed, residual
storage, computation capability, and waiting time, the cost
price of the FNs is estimated in Step 2. Further, in Steps 5-
8, each FNs’ utility is computed, and the optimal value of
waiting time is derived. Finally, the price is set by the ith

FN in Step 9. On the other hand, Algorithm 2 determines
whether the UE offloads their task to the FN present within
their vicinity or not. Depending upon the overhead incurred
for computation done locally and at the fog layer, as in Steps
2 - 14, the offloading decision is taken. Additionally, the hash
table is updated, and FN selected for computation offloading
is mentioned in Steps 12 and 17. Since Algorithm 1 needs
information from all FNs in the network, and calculate the
cost and utility for determining the FN’s resource price, it has
a running time of O(M) + O(M) ≈ O(M). On the other
hand, Algorithm 2 needs O(MN ) time for making offloading
decisions. In summary, DEFT asymptotically needs O(MN )
time for making its decisions.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme. First, we describe our simulation design and then
present our observations on running the experiments. We then
present how DEFT performs in comparison to the state-of-the-
art solutions.

A. Simulation Design
In this section, we evaluate the performance of the proposed
scheme DEFT in the presence of 5-120 IoT UEs and 5-80
FNs. We consider an IoV environment, where the UEs are
randomly distributed over a geographical region of area 10×
10 km2. To compute the speed (Sn) and direction (Dn) of
these UEs, we apply Gauss-Markov mobility model.
Sn,i = αS(n−1),i + (1− α)S̄i +

√
(1− α2)Sr(n−1),i (18a)

Dn,i = αD(n−1),i + (1− α)D̄i +
√

(1− α2)Dr(n−1),i

(18b)
where S(n−1),i and D(n−1),i represent the speed and di-

rection of the UEs at the previous time instant (t − 1). α
represents the tuning parameter, S̄i and D̄i denote the mean
value of speed and direction of the ith UE. Finally, Sr(n−1),i

and Dr(n−1),i represent the Gaussian random variables of
speed and direction. In this work, we set α = 0.1 with Dn and
Sn in the range of (0, 100) degrees and (0.8, 1.2) Kmph and
obtain the trace in Fig. 7(a) and their corresponding velocity
in Fig. 7(b). We deploy the FNs randomly around the UEs



7

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 10  20  30  40  50  60  70  80  90  100

L
a

te
n

cy
 (

se
cs

)

Time (secs)

Fog nodes
Cloud

(a) 40 User Entities

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 10  20  30  40  50  60  70  80  90  100

L
a

te
n

cy
 (

se
cs

)

Time (secs)

Fog nodes
Cloud

(b) 80 User Entities

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 10  20  30  40  50  60  70  80  90  100

L
a

te
n

cy
 (

se
cs

)

Time (secs)

Fog nodes
Cloud

(c) 120 User Entities

Fig. 5: Overhead endured when tasks are offloaded to fog nodes and when computed locally
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Fig. 6: Latency in case of fog and cloud computing schemes

(a) Mobility trace (b) Velocity

Fig. 7: Gauss-Markov mobility model

in Fig. 7(a). It may be noted that we illustrate only 4 UEs
in Fig. 13 for simplicity. In our simulation, we deploy the
FNs and UEs as shown in Table I. We study the overhead
experienced by each of the UEs over different time instants.
As the rate at which the UEs request for services varies with
time, we consider Poisson distribution to model their arrival
rate at the FNs. We consider the computation capability,
storage capacity, and battery capacity of the user entity as 8
— 18GHz, 8 — 64GB, and 3 — 5Ah, respectively. Further,
in the simulation, we consider the UEs’ task size as 400 —
500KB. We consider that these tasks execute in 1000 — 2000
cycles. We present the details of the simulation parameters in
Table I.

B. Results

In this section, we first describe the parameters latency, power,
and throughput, along with a few others, and then analyze the
results obtained during the simulation.

Utility: We prove that our proposed game-theoretic solution
DEFT attains equilibrium by Theorems 2 and 4. Figs. 4(a) and

TABLE I: Simulation Parameters

Parameter Value
FN computation capability 20− 25 GHz
FN storage capacity 1000−2000 GB
Shannon’s capacity (r(R[t], Ptx)) 30 KBps
Drain efficiency (η) 15.7%
Path-loss exponent (α) 2
Constant value (ξ) 0.0005
Power consumed (PT0

) 15.9mW
Cloud computation capability 100GHz

4(b) illustrate the variations in the utility of FNs and UEs
with the number of iterations. We apply Equations (7) and
(13) to compute the utilities achieved by the FNs and UEs.
We observe that an increasing trend exists in the utilities of
the FNs and UEs, which is due to the maximization of the
utility functions. On average, the utilities of FNs converge
after 20 iterations, while in the case of UEs, the utilities
show convergence after 10 iterations. Such convergence in
the utility values implies that the devices do not deviate
from their decisions. These utilities account for the device
configurations and the tasks from the user entities. With the
results in Fig. 4 and Theorems 2 and 4, we conclude that the
proposed solution achieves an optimal solution for both the
fog nodes and user entities. Additionally, the utility increases
as the number of devices (UEs and FNs) increases, which
proves that our solution is beneficial for both the consumers
and service providers.

Overhead: We describe overhead as the cost (inclusive of
device parameters) incurred by the UEs to perform a particular
task. We estimate the overhead for computation done locally
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Fig. 8: Power consumption in case of fog and cloud computing schemes
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Fig. 10: Beacons received on changing intervals

and at the FNs using Equations (1) and (2). In Figs. 5(a)–
5(c), we observe that the overhead increases linearly with
time. The possible reason behind such a trend is that the FNs
are getting busier, and the UEs keep generating tasks that
need computation, therefore overhead increases. However, we
observe that the overhead for local computation is always
higher than the overhead for computation in an FN, which
is the main motivation behind our work. Additionally, we
observe no significant change in the overhead as the number
of UEs increases.

Latency: We compute latency as the time required by the
UEs to execute their task. This time is inclusive of the time
required to offload the entire task, its execution, and the
delivery of results. Figs. (6(a))–(6(c)) show the latency in
case of FNs and cloud, in the presence of 40, 80, and 120
UEs. Along the x-axis, we increase the time from 10 up to
100 seconds, with a step of 10. We consider the cloud as
a centralized entity and randomly place the FNs. Similar to
the trend observed in the case of overhead, the latency also
increases with time. We characterize the variations in latency

with FNs executing other tasks as new requests arrive from
the UEs. However, we notice a few spikes in the latency in
the case of the cloud. The probable reason for these variations
in latency is the variation in the task size and time required
for computation. The latency is reduced by 25.88% on an
average at the 100th time instant in case of FNs compared to
the cloud.

Power Consumption: Motivated by the works of Roy et al.
[21], we compute the power consumption, in case of cloud
and FNs, as PTi = PT0 +

ξ×dαij
η +

Ii×dij
r(R[t],Ptx)

, where PTi
denotes the power consumed by the ith FN/cloud. PT0

is
the power consumed by the transmission circuit, and dij is
the Euclidean distance between the UEs and their nearest
FNs/cloud. Figs. 8(a)–8(c) illustrate the variations of power
consumption of the UEs using the proposed scheme, DEFT, in
the presence of 40, 60 and 80 FNs. The UEs do not possess
any choice in offloading to the cloud, as it is considered a
centralized entity. However, in the case of FNs, the UEs select
the nearest FN and offload their task as we randomly place the
FNs close to them. Therefore, it reduces the power consumed
significantly. The rate of increase in power consumption with
the rise in UEs in case of 40 FNs is about 2.09 %, while in
the case of the cloud is 3.67 %, respectively.

Throughput: Throughput is the number of tasks executed
locally or remotely per unit time. Fig. 9 shows the variations
of throughput in the case of UEs, cloud, and FNs. With the
increase in the number of UEs along the x-axis, we observe
that an increasing trend exists in the three instances. However,
as the FNs spend more time in execution than the transfer
of data to and from the UEs, the FNs possess the highest
throughput.

Beacons: Fig. 10 depicts the beacons received by two
arbitrarily chosen UEs. We vary the beacon intervals to study
the behavior of the received packets. We observe in all cases
that device 2 receives a larger number of beacons than device
1. We attribute this behavior to the varying distance and
motion of the devices/UEs. As we increase the intervals,
we observe a decreasing trend in the received beacons due
to a decrease in the number of broadcasts. However, with
an increase in beacon intervals, the UEs no longer have
updated FNs’ information. Decisions based on 11.26 ms
beacon intervals may result in heavy penalties as the FNs
may be in another state. The UEs lose the opportunity to take
access to the FNs due to non-updated information. Although
the standard beacon interval of 1024 micro-seconds/1.02 ms
increases channel and message overhead, it facilitates real-
time decisions. We conclude that the lower beacon intervals
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Fig. 11: Comparison of various parameters with the increase in user entities
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are beneficial, which results in efficient channel utilization.

C. Benchmark Solution
To evaluate the proposed scheme, DEFT, we perform a
comparison with existing benchmark solutions proposed by
Mansouri et al. [9] and Elkhatib et al. [8]. The authors in [9]
proposed a resource allocation approach to the IoT users in
a hierarchical fog-cloud computing system. They illustrated
the delay experienced by each task on processing locally
and at the cloud-server, which is equivalent to our proposed
scheme’s latency. In another work, Elkhatib et al. [8] worked
on the feasibility of micro-clouds, designed with a collection
of Raspberry Pis. We observe the variations in the throughput,
power consumption, latency achieved, simulation time, and
overhead, with the increase in the number of UEs.

Fig. 11(a) shows that the throughput is increased by 51.06%
and 60.57% in our proposed scheme, compared to the existing
schemes [8], [9]. We attribute this behavior to the linking of
the tasks to the appropriate FNs. DEFT increases the idle FNs
utilization and minimizes the burden (impending task queue)

from the overloaded ones. Further, in Fig. 11(b), we observe
that the power consumed in the case of DEFT is reduced
by 75.19% and 79.17% compared to the existing schemes
[8], [9]. We calculate the energy consumption using the
Equation mentioned in Section IV, which considers the power
consumption of the transmission circuit and the Euclidean
distance between the UEs and the FNs. Accordingly, we
attribute the low power consumption of DEFT to the selection
of optimal nearby FNs. We comment that due to the proposed
utility function, in addition to the availability of resources,
DEFT also considers the selection of the closest favorable
FN among the proximal ones. The selection of nearby FNs
reduces the energy required for transmission, which reduces
the overall energy consumption. We envision the utility of
the cloud for storage only. Fig. 11(c) illustrates that DEFT
reduces latency significantly. Fig. 12 shows that our proposed
scheme, DEFT outperforms existing schemes with an increase
in the number of FNs. Interestingly, we observe that with
the increase in the number of FNs, the latency follows a
decreasing trend. On the other hand, with the rise in the
number of UEs, latency follows an increasing trend. We also
observe that the rate of increase/decrease in latency, in case
of an increase in FNs/UEs, is much lower in amplitude in
our case. To examine the real-time processing capability of
the proposed scheme, we analyze the computational com-
plexity in terms of the simulation time required to execute
the algorithms. Fig. 13(a) demonstrates the variations in the
simulation time with the increase in the number of user
entities (UEs). We observe that the simulation time of the
proposed scheme is reduced by 93% and 92% compared to
the existing schemes [8], [9]. Additionally, we observe that
the rate of rise in simulation time is significantly low in the
case of 500 simulation runs, compared to 100 simulation runs.
Fig. 13(b) demonstrates the overhead in our proposed scheme,
centralized fog environment, and the existing schemes. We
observe that the overhead increases with the increase in
the number of UEs; however, the pattern in the increase
of overhead differs. In the case of centralized computation
offloading, the overhead incurred is always high because it
is done without selecting the appropriate FNs. Further, in the
existing schemes, the hierarchical fog-cloud [9] and micro-
cloud based [8] platform incur higher overhead compared to
DEFT. Therefore, we infer from the above discussion that the
proposed scheme, DEFT outperforms the other schemes in
terms of throughput, power consumption, latency, overhead,
and simulation time.



10

V. CONCLUSION

In this paper, we proposed a decentralized, two-level game-
theoretic solution for computation offloading in an IoV
environment. Towards this, we considered the presence of
heterogeneous mobile IoV UEs, FNs/RSUs, and the cloud as
external platforms for computation offloading. Additionally,
we proved the existence of equilibrium for both the UEs
and FNs in the game, along with its concavity. Further, we
analyzed DEFT with the increase in the number of devices and
existing solution approaches, in terms of throughput, power
consumption, latency, overhead, and simulation time.

We assumed that the IoV UEs have one task to offload to
the FNs/cloud at any particular time instant. In the future, we
plan to extend our work by breaking these tasks into smaller
subtasks with dependencies by forming directed acyclic task
graphs. We also plan to minimize both latency and power
consumption by introducing parallelism.
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