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Abstract—The Internet of Things (IoT) environments have hard real-
time tasks that need execution within fixed deadlines. As IoT devices
consist of a myriad of sensors, each task is composed of multiple
interdependent subtasks. Towards this, the cloud and fog computing
platforms have the potential of facilitating these IoT Sensor Nodes (SNs)
in accommodating complex operations with minimum delay. To further
reduce operational latencies, we breakdown the high-level tasks into
smaller subtasks and form a Directed Acyclic Task Graph (DATG). Ini-
tially, the SNs offload their tasks to a nearby Fog Node (FN) based on a
greedy choice. The greedy formulation helps in selecting the FN in linear
time while avoiding combinatorial optimizations at the SN, which saves
time as well as energy. IoT environments are highly dynamic, which
mandates the need for adaptive solutions. At the chosen FN, depending
on the dependencies on the DATGs, its corresponding deadlines, and
the varying conditions of the other FNs, we propose an ε-greedy non-
stationary multiarmed bandit-based scheme (D2CIT) for online task al-
location among them. The online learning D2CIT scheme allows the FN
to autonomously select a set of FNs for distributing the subtasks among
themselves and executes the subtasks in parallel with minimum latency,
energy, and resource usage. Simulation results show that D2CIT offers
a reduction in latency by 17% compared to traditional fog computing
schemes. Additionally, upon comparison with existing online learning-
based task offloading solutions in fog environments, D2CIT offers an
improved speedup of 59% due to the induced parallelism.

Index Terms—Computation Offloading, Fog Computing, Distributed
and Parallel Computing, Internet of Things, Reinforcement Learning.

1 INTRODUCTION

The advancement of the Internet of Things (IoT) and its
applications has led to the generation of sizeable tasks. The
user devices/Sensor Nodes (SNs) in IoT scenarios have a
wide range of sensors on board, such as cameras, GPS,
Infrared, and others. These sensors generate sizeable data,
which requires complex operations for inferencing. Opera-
tions on these data involve different types of tasks ranging
from simple actuation to intensive image processing. Fur-
ther, these hard real-time applications need results within
deadlines [1]. Some mission-critical applications also need
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Figure 1: Proposed D2CIT scheme, where an SN offloads its
task to an FN in its vicinity, and the FN redistributes the
subtasks among other FNs.

computation in the order of milliseconds. The increasing
number of SNs leads to an increase in the demand for
operational services by external platforms like the Cloud
and Fog. Existing literature concerning fog computing has
successfully brought services like IaaS, PaaS, and SaaS closer
to the edge of the network, which reduces latency, network
bandwidth, as well as energy [2]. In this work, we further
decrease the operational latency by assuming that the high-
level tasks of the SNs are in the form of Directed Acyclic
Task Graphs (DATGs), and performing executions on the
subtasks in parallel. Currently, we focus only on the selec-
tion of the set of FNs for distribution and parallel processing
to complete tasks within deadlines.

To reduce operational latencies, we exploit the dependencies
on the DATGs and execute the subtasks in parallel whenever
possible. As shown in Fig. 1, the SNs in Tier 1 collect
data corresponding to their operations. To cope with the
resource-constrained nature, we formulate a greedy scheme
that selects an FN for offloading the SN’s task to the fog
layer (Tier 2). The greedy formulation considers the energy,
processing, distance, and communication delay from the
SNs. We envision that this FN selects the optimized set of
FNs that execute the subtasks. Due to the reasons mentioned
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above, we presume that the initial selection of the FN need
not be an optimized choice, which is the main reason for
using a greedy solution. Towards selection of the set of FNs
that perform parallel execution of the subtasks, we formu-
late an ε-greedy non-stationary multiarmed bandit (MAB)-
based task offloading scheme. The reason behind using a
learning-based approach is the dynamic nature of mobile
computing environments. The ε in MAB refers to the degree
of exploration by an agent, which further helps in making
dynamic decisions. The conditions of the devices (FNs) such
as its configurations, connection links, and others vary with
time due to factors such as incoming requests, queue length,
processing power, and availability of cores, among oth-
ers. Additionally, we also aim to achieve execution within
deadlines. Online solutions such as reinforcement learning
prove beneficial in overcoming the challenges in such dy-
namic environments. As parallelism in the fog layer also
mandates transmission of the subtasks among the FNs, we
anticipate tradeoffs between transmission and processing
delays. However, learning-based algorithms are capable of
tackling such tradeoffs and offer decisions that correspond
to the local maxima of the reward function. In this work,
we incorporate the difference between the deadline and the
actual execution time in the reward function explicitly to
penalize the FNs that exceed the deadlines. In the rest of this
paper, we refer to our proposed scheme as Decentralized
Distribution and Computation of Indivisible Tasks (D2CIT).

1.1 Motivation

SNs in IoT environments have hard real-time tasks that need
execution within deadlines. In such scenarios, offloading
the tasks to fog and edge computing platforms helps in
accommodating seamless execution within deadlines [3].
These tasks involve data from a myriad of sensors and
need different interdependent operations, and they need
to maintain defined Quality of Service (QoS) [4]. However,
most solutions focus on offloading the tasks to a single FN
for sequential execution. In such schemes, only those FNs
that are within the communication range of the respective
SNs get utilized, while the rest remain idle, causing under-
utilization of available resources. However, breaking a high-
level task into smaller subtasks and creating a DATG opens
scope for executing the subtasks in parallel. Additionally,
automating the decision at the fog layer for selecting a set of
FNs for executing the subtasks helps in using idle FNs. Such
automation at the fog layer also reduces the operational load
in the SNs, and the fusion of parallelism helps in further
reducing the latencies, which acts as the main motivation for
our work. Towards this, we design a two-tier scheme that
first allows an SN to select an FN (within communication
range) using a greedy approach at the first tier. The greedy
scheme helps in avoiding optimization time at the user
level. Then, as the changing conditions of the FNs in an IoT
environment mandates the need for automated learning al-
gorithms, we formulate an Epsilon(ε)-greedy non-stationary
MAB-based solution for selecting a set of FNs among others
for executing the subtasks.

1.2 Contribution

In this work, with the assumption that the FNs form DATGs
from the high-level tasks [5], we propose a decentralized
task distribution system for executing simultaneously ac-
cording to the levels in the DATG. The specific set of
contributions in this work as follows:

• Utility Functions: We formulate utility functions
for 1) determining the initial fog node (greedy ap-
proach), 2) subsequent fog nodes for executing sub-
tasks, and 3) final reward on completion of the tasks
within deadlines.

• Reinforcement Learning (RL): We formulate an ε-
greedy non-stationary MAB-based RL solution for
automating the optimized selection of FNs in such
dynamic environments. The ε gives us the flexibility
to explore FNs that are previously not chosen, open-
ing scope for improvement in subsequent iterations.

• Deadlines: While most of the existing literature usu-
ally focuses on just reducing operational latencies,
we focus on completing the executions within toler-
able deadlines.

• Evaluation: Through extensive simulations, we
present the feasibility and advantages of D2CIT com-
pared to existing state-of-the-art solutions.

2 RELATED WORK

Computational offloading to cloud and fog has been a
promising solution for load balancing in dynamic environ-
ments. There has been significant efforts in this area of
research. We now discuss some of the work done towards
addressing this issue.

Fog computing schemes are expected to complement the
services of the cloud. However, the user nodes need to
decide whether to offload their tasks to the cloud or at the
fog nodes. Towards this, Misra and Saha [6] proposed a
scheme for deciding whether to offload to the cloud or pro-
cess locally. They also proposed an optimal path selection
to reach a fog node in multi-hop networks. Their greedy
solution takes delays, energy consumption and dynamic
network conditions into account while making the decision.
Similarly, the authors in [7] formulated a game theoretic
scheme for a system to choose whether to offload to the
nearby devices or to the edge computing platform. Similarly,
Nassar and Yilmaz proposed a resource allocation scheme in
Fog Radio Access Network (Fog RAN) using reinforcement
learning and Markov Decision Process (MDP) [8]. They
considered the channel utility and state of the nodes as
factors for deciding whether to offload to the cloud or to
the fog. Researchers have also been trying to design other
efficient schemes (single/multi-tier) for resource allocation
in the fog layer [9]. Additionally, Azimi et al. [10] illustrated
the scope of fog computing in healthcare applications by
designing a hierarchical computing architecture to tackle the
low reliability and availablity problems of the cloud. Li et al.
[11] proposed a network architecture for vehicles in smart
cities for reducing network congestion. They formulated a
joint optimization scheme concerning network, cache, and
computing resources.
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Sarkar and Misra [12] theoretically modelled and analysed
fog computing, and illustrated how it reduces latency as
compared to cloud computing. Researchers have been con-
tinuosly trying to maximize the Quality of Service of the
fog nodes to better serve the users [13], [14]. Task allocation
among the fog nodes is analogous to the mathing problem.
Concerning to this, Chiti et al. [15] proposed a scheme
for offloading. They proposed a decentralized algorithm to
select the most suitable fog node based on transmission,
waiting and computation times. However, the fog node are
capable of performing multiple tasks simultaneously. The
authors in [16] studied to perform task scheduling and task
image (task data) placement simultaneously, which aimed
to jointly optimize both of them in order to minimize the
maximum completion time. Researchers have also exploited
the fog computing paradigm for developing energy efficient
solutions [17], [18]. On the other hand, Mishra et al [19]
proposed and implemented Particle Swarm Optimization
(PSO), Binary Particle Swarm Optimization (BPSO) and
Bat algorithms for service allocation in a heterogeneous
fog computing environment using Virtual Machines. The
authors in [20] proposed an RL method with emphasis
on energy harvesting in Mobile Edge Computing (MEC)
environments.

Synthesis: Task and resource allocation in cloud and fog
computing is a mature field of study among researchers.
As mentioned above, most of the work on fog computing
relies on a single centralized agent to take the decision of FN
selection. However, there is limited work on fog computing
that uses DATGs and solves the problem of task offloading
in a decentralized manner in a heterogeneous environment.
In this paper, we propose a Reinforcement Learning based
decentralized horizontal scheme to offload and distribute
subtasks among FNs.

3 PROBLEM DESCRIPTION

In this section, we describe our problem scenario and ex-
plain in detail the two-tier computation offloading scheme
along with our set of assumptions. As shown in Fig. 1, we
consider two types of devices in our scenario which are
described as follows:

1) Fog Nodes (FNs): These are the set of heterogeneous
devices that are present at the edge of the network.
In addition to the networking services, these FNs
also offer computation services to the requests com-
ing from the users. In our simulation environment,
we consider the configurations of gateways, hubs,
switches, bridges, and routers as FNs. In IoT en-
vironments, in addition to the networking devices,
RSUs also act as FNs.

2) IoT Sensor Nodes (SNs): These are the set of hetero-
geneous IoT devices that capture data for process-
ing. In our scenario, we consider that these devices
have a combination of sensors such as cameras,
GPS, InfraRed, and others. The fog network acts as
the external platform for the SNs for offloading their
high-level tasks.

Assumption: In this work, we make the assumption that the
SNs and FNs are in a quasi-static state to one another, which
allows us to return the result to the SN from the FN cho-
sen using the greedy-based solution. This does not totally
restrict the movement of the SNs. In the best case, WiFi
offers a communication range of 50 meters, which gives us
a maximum travel distance of 100 meters (diameter). On
an average, we get a travel distance of 30-50 meters (one
sided radius), which is sufficient to get back the results
from the fog nodes. However, in the worst case, the end
devices may move out of the network, resulting in loss of
communications. We plan to account for such situations and
extend this work in the future.

3.1 System Model

In our system, we consider F = {f1, f2, f3, ..., fM} and
V = {v1, v2, v3, ..., vN } as the sets of heterogeous FNs
and SNs in a fog-enabled IoT network. The SNs commu-
nicate with the FNs wirelessly while the FNs communicate
among one another via both wired and wireless means.
The FNs have the ability to perform networking as well as
computation operations simultaneously and they broadcast
periodic beacons containing information regarding their
computation power, available storage, geographical posi-
tion, and the number of cores occupied in executing other
requests. We represent the tasks in the SNs using three
tuples as Tn =< T size

n , T cycle
n , T limit

n >, such that T size
n

is the size of the task, T cycle
n is the number of cycles

required for execution, and T limit
n is the deadline for the

nth FN respectively. We now define the parameters involved
in this work as follows. Computation power (Cnorm

x (t)) is
the normalized number of cycles the FN/SN execute per
second and is calculated as the ratio of the device’s current
computation power (Cdev

x (t)) and its maximum capacity
(Cmax

x ),represented as Cnorm
x (t) = dCdev

x (t)/Cmax
x e. We

use x to represent the devices for the parameters which
are common for both SNs and FNs, and t to represent the
time instant. Available storage (Snorm

x (t)) is the normalized
available storage space (Sdev

x (t)), calculated as the ratio
of current available storage and the maximum storage ca-
pacity (Smax

x ), represented as Snorm
x (t) = dSdev

x (t)/Smax
x e.

Distance (dnormfi,x
(t)) is the distance of ith FN fi from de-

vice x calculated using the standard distance formula on
geolocations obtained from the beacon signals explained
above. Delay (Tnorm

fi
(t)) is the duration for which the

requesting device has to wait until it receives the result
of the task (T ) offloaded to ith FN (fi). For nth task as
time instant (t) in device x, we calculate the delay as the
sum of sending time (T send

n (t)), queueing time(T queue(t)),
and processing time (T ps

n,x(t)), respectively. We calculate
each of them as: (T send

n (t) = dT size
n (t)/DataRate(t)e),

(T ps
n,x(t) = dT cycle

n (t)/Cdev
x (t)e), and T queue(t) = 1/(µ−λ),

where µ and λ are the service and arrival rates, respectively
with each following a Poisson distribution [21], and the
time required for sending the result back divided by the
deadline (T limit

n (t)). Since the size of the result is minis-
cule compared to that of the original task, we discard it.
Thus, Tnorm

fi
(t) = (T send

n (t) + T ps
n,x(t) + T queue)/T limit

n (t).
We acquire the DataRate(t) using the Shannon’s formula
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DataRate(t) = BW (t)× log(1 + SINR(t)), where BW (t)
and SINR(t) are the bandwidth and Signal to Interference
plus Noise Ratio at time instant t, respectively. The utility
function for the jth SN with task T to choose an FN within
its vicinity considering the Cnorm

fk
(t), Snorm

fk
(t), dnormfk,vj

(t),
and Tnorm

fk
(t) of the kth FN as:

UTvj (t) = max
k=1,...,p

⌈
Cnorm

fk
(t)Snorm

fk
(t)

(dnormfk,vj
(t) + ψ)Tnorm

fk
(t)

⌉
(1)

where p is the number of FNs in jth SN’s vicinity. In
this work, the SNs choose their corresponding FN using
a greedy selection based on equation 1. We describe the
greedy solution in Algorithm 1. We consider each of the
parameters to be a function of time to keep track of the
dynamic nature of the IoT environments. For the ease of
representation, we remove (t) from the rest of the equations.

Algorithm 1 Selection of FN fgreedy by SN vj

INPUTS:
1: • Cfi(t): Computation Power of FN fi.

• Tfi(t): Expected delay from FN fi.
• Sfi(t): Available Storage in FN fi.
• dfi,vj (t): Distance between FN fi and SN vj

OUTPUT: fgreedy : FN f with maximum utility function.
2: for i = 1 to p do . p : No. of FNs in vicinity of vj
3: Compute UTvj (t) according to Equation (1))
4: if UTvj ,fi(t) ≥ U

T
vj ,max then

5: Set fgreedy = fi
6: Update UTvj ,max

7: if p == 0 then . If vj has no FN within its vicinity
8: Perform computation locally

3.2 D2CIT: Decentralized Distribution and Computation
of Indivisible Tasks

As mentioned earlier, the dynamic nature of IoT environ-
ments mandates the need for automated solutions. In our
scenario, the states of FNs keep changing as the SN requests
for computational service increases. Towards this, once the
SN sends its task to an FN, we design an ε-Greedy Non-
Stationary MAB-based solution to select the set of FNs for
executing the subtasks. This allows us to exploit the services
of FNs that have better performance and also explore other
FNs with probability ε. Also, to reduce our search space, we
only consider FNs that have Tx(t) ≤ T limit

n and have at least
one core available to serve a request. Thus, our approach
consists of three parts, namely Agent, Arms, and Rewards.
In our scenario, Agent is the FN fgreedy that is chosen by
an SN based on the greedy choice and Arms are the FNs
in the scope list. The Agent tries to gain knowledge about
the Arms and exploit them to make an optimized decision
while maximizing the reward. The decision to select arms
leads to a reward according to the probability distribution
of the concerned arms. In the case of non-stationary MAB,
the rewards keep changing with time, which is analogous
to the changes in the performance of an FN. For calculating
the reward, the FN fgreedy first identifies the FNs that have
the potential to operate on the subtasks within deadline

(T limit
subtask). We then measure the time taken by the FNs

and in then reward based on how early the subtasks got
completed.

3.3 Reward

We express the rewards for the FN fgreedy , we consider
how fast the chosen set of FNs completes the subtasks. On
completion of the whole task, T limit

subtask − Tx expresses the
speed of execution concerning the deadline. Additionally,
we also consider the size of the subtasks offloaded. It is
undesirable to offload tasks to long distances as well as
consumption of power Poffload

fgreedy
. We formulate a utility

function for an FN on assigning a subtask and inputs to
the reward table as:

Usubtask
fgreedy

=
(T limit

subtask − Tx)T size
subtask

(dfk,vj + ψ)Poffload
fgreedy

(2)

In order to limit the rewards to the range of (0, 1), we

use the sigmoid function as Rsubtask
fi

= e
Usubtaskfgreedy (1 +

e
Usubtaskfgreedy )−1 Finally, we calculate the reward for fgreedy as:

Rsubtask
fi =

e

(T limitsubtask−Tx)T sizesubtask

(dfk,vj
+ψ)Poffload

fgreedy

1 + e

(T limit
subtask

−Tx)T size
subtask

(dfk,vj
+ψ)Poffload

fgreedy

(3)

Every FN maintains a table that consists of rewards that it
has obtained on offloading to every other FN. The dynamic
nature of the IoT environments often forces the MAB strat-
egy to make wrong decisions on using standard averaging
as the estimation function. Instead, for FN fi, we compute
the reward for fgreedy as a weighted average of rewards
with reduced weights for older rewards. Although the
changes in IoT environments are continuous, the correlation
exists more towards the recent past. We express this using
the weighted average mentioned earlier, which helps in
discarding scenarios in the past that have no connection to
the current one. Thus, we calculate the average reward for
executing the whole task as:

Ravg
fi

=
Rn

fi
+ ρRn−1

fi
+ ρ2Rn−2

fi
+ ...+ ρnR0

fi

1 + ρ+ ρ2 + ...+ ρn
(4)

where ρ < 1 is the step size, andRy
fi

is yth reward obtained.
With (ε)-greedy strategy, Agents explore the environment by
randomly choosing the arm with the probability of (ε) and
exploit the knowledge of rewards by greedily choosing the
Arm with the highest output of estimation function with
the probability (1 − ε). We summarize our MAB scheme in
Algorithm 2.

4 PERFORMANCE EVALUATION

In our scenario, we consider multiple SNs which need
to offload high-level tasks, and multiple FNs connected
by strong backhaul network (Fog Network) that cooperate
among one another in providing computational services.
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Algorithm 2 Selection of FN fk by FN fgreedy

INPUTS:
• Cores left in fi
• Cfi(t): Computation Power of fi
• dfi,fgreedy : Distance between fi and fgreedy
• Tn: Subtask Tuple
• Rewards Table of fgreedy

OUTPUT: fk : FN f with highest Avg Reward
2: for i = 1 toM do .M : Total No. of FNs

Compute Delay Tfi(t) using Tn
4: if Tfi(t) ≤ T limit

n and Cores left in fi ≥ 1 then
Add fi to scope list

6: if length of scope list is 0 then
Perform computation locally

8: else
for i = 1 to S do . S : No. of FNs in scope list

10: for each subtask in Tn do
Compute Ravg

fi
according to Equation (4)

12: if Ravg
fi
≥ Ravg

max then
Set fk = fi

14: Update Ravg
max

Table 1: Simulation Parameters

Parameter Value
SN computation capability 0.1, 0.2, 0.3 GHz
FN computation capability 0.8, 1.0, 1.5 GHz
Cloud computation capability 3.9 GHz

Task arrival Rate at FN 188.391, 299.985,
427.429MIPS

Task size 420− 12600 KB
Corresponding Cycles required by tasks 1000− 30000
Shannon Capacity 30 KBps
Energy to transfer 1B data 20 nJ
FN Power for processing 2W

The SNs have a minimal range for communication as they
communicate wirelessly with the FNs. We consider static
positions for the FNs. On the other hand, we assume that
the SNs will remain in the FNs vicinity during the execution
of the tasks and hence are quasi-static to one another.

In this section, we present the results illustrated by D2CIT
during our simulations. Motivated by the simulation param-
eters in [12], we run our experiments on those listed in Table
1. We randomly deploy the FNs and the SNs on a square
area of 1000 × 1000 m2 with a cloud server at the center.
The FNs and SNs are capable of WiFi communications
due to which we set the communication range as 30 – 50
meters, respectively. We compose our code in Python and
execute on an i5 processor for running our simulations.
Upon implementing reinforcement learning algorithms, the
FNs receive a reward for selecting the correct subset of
FNs for performing the sub-task executions. Since most
of the existing solutions focus on offloading the tasks to
a single FN in its entirety, we compare our results with
generalised cloud and fog computing schemes and define
them as follows:

1) Cloud Computing: We place the cloud at the center of
our simulation area and offload tasks from the SNs.
Since the resources in these servers are virtually
unlimited, we do not impose any restrictions on the
number of incoming requests.

Figure 2: Rewards for the FNs for redistributing the subtasks
and executing the tasks within deadlines with varying ε
values.

2) Fog Computing: We consider the same FN configu-
rations and positions as in D2CIT for the fog com-
puting scheme. However, instead of redistributing
the subtasks among the other FNs, we execute the
tasks sequentially in its entirety. Additionally, as we
consider our FNs to have 4 cores, we perform tasks
from 4 SNs simultaneously.

We now present the rewards received by an arbitrary FN
during one of our experiment iterations.

(a) 100 Fog Nodes (b) 500 Fog Nodes

Figure 3: Comparison of the deadlines set and the actual
execution time of the tasks illustrated by D2CIT.

4.1 Rewards

We present the rewards from an FN during an experiment
running with 1000 SNs and 500 FNs. We vary the ε (ex-
ploratory) factor to understand how the performance varies.
In Fig. 2, we observe that the system works best when
ε = 0.2. We observe a similar trend at 0.1. However, the
reward value is significantly low. From such trends, we
establish that some amount of variability in FN selection
is beneficial. On setting higher ε, we observe a sudden drop
in the reward values. Intuitively, this is because, in a set of
fixed FNs, the FN performing the selection already chooses
the best subset. Further changes lead to the selection of less
efficient FNs, which causes deterioration in the outcome.
Thus, for the rest of our simulations, we set ε = 0.2 and
observe the results.

4.2 Deadlines

We demonstrate how D2CIT performs with respect to the
deadlines set for each subtask. In our experiments, we set a
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range of deadlines and observe the results. In Figs. 3(a) and
3(b), we observe that majority of the tasks finish execution
within the deadlines. Although we notice a few tasks in
each of the scenarios that have higher delays as compared
to the others, they do not exceed the thresholds. We believe
that the higher delays are due to congestion and increased
waiting time as the number of requests increases. In the
future, we plan to address this issue by developing schemes
that changes the chosen subset of FNs. Since all of the tasks
finish execution within the deadlines, we conclude that our
proposed D2CIT scheme performs within tolerance level
with respect to each task in a fair manner.

4.3 Latencies

We present the latencies in case of D2CIT and compare it
with that of general Cloud and Fog Computing schemes.
We show the overall latency and then present a breakdown
of the latencies for transmission and processing. In the
following results, we fix the number of FNs (100 and 500)
and vary the SNs from 200 – 1000 in each case. For better
representation, we present each of the latencies in log scale.

4.3.1 Overall Latency

The overall latency is inclusive of the time required to
send the tasks to the FNs until reception of the results and
present them in Figs. 4(a) and 4(b). Due to the introduction
of parallelism, we observe that in all cases, the latencies
by D2CIT is much lower than the general Cloud and Fog
Computing schemes, which is the main motive of our work.
In particular, D2CIT offers a reduction of 17% in the overall
delay. This is because the proposed method explores the
availability of other FNs (not best-effort) which may offer
better delays in addition to the parallel computations. As the
number of SNs increases, the number of tasks also increases,
which again significantly increases the number of subtasks,
which increases the waiting time in FNs proportionately.
Due to this increase in the waiting time, we observe an
increasing trend in the latencies. However, the ratio of the
difference in the general schemes and our proposed method
remains the same.

4.3.2 Transmission Latency

Transmission latencies includes the time invested in trans-
ferring tasks and subtasks from the SNs to the FN (initial
selection) and then to the other FNs. In Figs. 4(c) and 4(d)
we observe that the transmission latency is maximum in
case of Cloud computing schemes, while that in case of
Fog computing, it is minimum. As per our expectation, the
latency is maximum in case of D2CIT. The increase latency
is because of the further transmission of the subtasks among
the FNs in the fog layer. We exclude the time for returning
back the result to the SN as it is usually a single packet
which is relatively smaller than the original tasks. Due to
this minuscule size, we neglect the time concerning the
transfer of the result packets.

(a) 100 Fog Nodes (b) 500 Fog Nodes

(c) 100 Fog Nodes (d) 500 Fog Nodes

(e) 100 Fog Nodes (f) 500 Fog Nodes

Figure 4: Comparison of latencies endured by SNs in case
of general fog, cloud, and D2CIT schemes with varying
number of SNs and fixed number of FNs.

(a) 100 Fog Nodes (b) 500 Fog Nodes

Figure 5: Comparison of energy consumption by general
fog computing schemes and D2CIT with varying number
of SNs.

4.3.3 Processing Latency

Processing latencies are the time corresponding to the sum-
mation of the execution time of the subtasks among the
FNs. Due to the high configurations of cloud servers, the
processing time is minimum. On the other hand, as the
FNs in general Fog Computing schemes perform each of
the subtasks sequentially, we observe in Figs. 4(e) and 4(f)
that D2CIT offers lower latencies than the former. Further,
we notice that as the number of FNs increases, the latencies
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decrease further. This decrease in latency is due to the
availability of idle FNs, which have the potential to provide
service on demand. However, the FNs might be at distant
locations, which increases the transition latency, as shown
in Section 4.3.2. Although we conclude that our proposed
D2CIT scheme scales well, we strongly feel the need for an
optimized relation to determining the number of FNs for
the corresponding number of SNs in the future.

4.4 Energy Consumption

We compare the energy consumption in the case of D2CIT
and compare its results with the general fog computing
solutions. We calculate the energy consumption based on
the metrics in Table 1. We observe in Figs. 5(a) and 5(b) that
in all the scenarios, D2CIT demonstrates reduced energy re-
quirement. Additionally, we notice that with the increasing
number of FNs, D2CIT further reduces energy consumption,
which further increases the difference between the two
schemes. We attribute this to the ε in the MAB solution,
which allows D2CIT to explore a range of FNs that offer
better performance than those present closer or than those
selected earlier. However, with the increasing number of
FNs, the energy consumption increases, which is intuitive
as more number of devices needs more energy to operate.

4.5 Benchmark Solution

Existing literature usually does not focus on performing
tasks within deadlines and also does not focus on breaking
the tasks into smaller subtasks to exploit parallelism. How-
ever, researchers have been developing new methodologies
for improving computation offloading in fog enabled en-
vironments. To demonstrate the performance efficiency of
D2CIT, we compare our results with another computation
offloading scheme named BLOT [22] by Zhu et al. Authors
in this work formulated a bandit learning algorithm for
determining FNs online. However, they only offload the
task to the FNs in its entirety. We present a comparative
study of the processing latencies and speedup of BLOT with
our proposed scheme.

4.5.1 Latency

We run simulations of D2CIT as well as BLOT in an area
of 1000 × 1000m2 containing 1000 SNs with varying FNs
(100, 250, and 500). We observe in Fig. 6 that although
BLOT also performs the tasks within deadlines, the average
processing time is higher than that of D2CIT. Additionally,
in every scenario, the performance of BLOT remains the
same throughout. On the other hand, the delays in D2CIT
gradually decreases as the number of FNs increases. We
believe that since D2CIT utilizes idle FNs and avoids those
with high waiting times, which leads to a reduction in the
processing latency. We conclude that D2CIT scales well, and
witness the natural intuition that latency decreases as the
number of FNs increases.

Figure 6: Distribution of delays on comparing D2CIT with
existing solution.

Figure 7: Speedup in case of D2CIT and existing solution.

4.5.2 Speedup

We calculate the speedup as the ratio of the time required
for executing the tasks using D2CIT/BLOT to the time
required for sequential execution and is a unitless factor.
We observe in Fig. 6 that D2CIT demonstrates improved
latency as compared to BLOT and that the average latency
decreases further down as the number of FNs increases.
Consequently, we notice in Fig. 7 that with increasing FNs,
the speedup value of BLOT decreases while that in the case
of D2CIT increases. On average, in comparison to BLOT, we
observe a 59% increase in speedup on implementing D2CIT.
Intuitively, the introduction of parallelism in D2CIT plays a
significant role in obtaining such increased speedups. The
FNs have to perform very small subtasks, which makes
them available for other tasks instantaneously, which is not
possible in conventional methods. We observe a decreasing
trend in the case of BLOT on increasing number of FNs.
This is because the computing fog nodes under this scheme
share their execution overheads only by offloading to other
devices that have better configurations. Taking the con-
straint of executing tasks within deadlines, BLOT chooses
fog nodes that are computationally superior but induces
additional delays due to data forwarding and subsequent
transmissions on adding more FNs. We infer that D2CIT
significantly increases resource utilization in the FNs.

In summary, we observe the following from our simulations:

• The reward function in equation 3 tries to maximize
the utility and the exploration factor plays a major
role. We observe that the proposed model works best
for ε = 0.2 (as shown in Fig. 2) in Section 4.1.
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• In Sections 4.2, 4.3, and 4.4, we observe reduced
delays and energy consumptions in comparison with
traditional (best-effort) fog and cloud computing
schemes while executing the tasks within deadlines.

• In comparison to state-of-the-art solutions, we ob-
serve that D2CIT offers reduced latencies and in-
creased speedup in Section 4.5.

5 CONCLUSION

In this work, we presented a two-tier distributed scheme
D2CIT, for computation offloading in a fog-enabled IoT
environment. We considered SNs with tasks with deadlines
that have computational needs. We envision D2CIT to break
down the high-level tasks to smaller subtasks and form a
DATG. We design a greedy solution for the selection of the
FN, which breaks down the task from the corresponding
SNs. For automating redistribution of the subtasks in a
dynamic environment, we design an Epsilon(ε)-greedy non-
stationary multiarmed bandit-based scheme. To illustrate
the operational efficiency of D2CIT, we presented the dead-
lines, latency, and energy consumption from our simulation
results. Additionally, we also compared D2CIT with existing
solutions and presented how our proposed work performs
better concerning latency and speedup.

In the future, we plan to extend this work by accounting for
issues due to mobility and loss of communications. Towards
this, we plan to return the results to the SNs from the nearest
FN than the initially chosen FN using the greedy solution.
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