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Abstract:

In this chapter, we propose COVI-SCANNER, an loT-based solution to overco issuesof
secondary spread of the virus from fomite spaces in public infrastructures. \With&he aSsumption

that the infected individuals are already identified, we design COVI-SCAN] A augmented
reality-based phases: contamination and sanitization. In the contaminatiofyp e first detect
the person and the corresponding bounding boxes for tracking his/her move s and highlight
the spaces as they contaminate it. In the sanitization phase, we first jdeptify cleaning/sanitization
materials/objects and remove the markers as they pass (while CEE hrough the highlighted

fomite spaces to ensure sanitization. Additionally, we minimjize ay by dividing the resource-
constrained fog nodes into two dedicated sets for performingyeaelt” phase before transferring to
centralized servers for storage, which also reduces bottlefgcks atithe server. Through the extensive
implementation of COVI-SCANNER, we observe®hat it operétes with 81% accuracy on real-time
data with a delay of at most 0.1 and 1.2 secondsgforthe contamination and sanitization phases,
respectively. Further, due to the incorporation o -based architecture, we observe maximum

upload and download rates of 700 Kbps in
1.1 INTRODUCTION

The outbreak of the COVID-19 %Qpread at an alarming rate all around the world. The
nfecte

intangible nature of the vir s transmission mode makes containment challenging.
Moreover, the droplets from, amfi d individual remain remnant in their hands in addition to
transmission in the fg %Q s, which leads to contamination of public objects and spaces on
interaction (touchi ge). The COVID-19 virus survives for almost 3 days on surfaces
made of steel andplaStic, and over 24 hours on cardboards (Chamola 2020). This gives rise to
fomite spacesgand Such intractable contamination rapidly facilitates secondary spreading,
especially in Z&id public environments. As a healthy person interacts with these fomite spaces,
the virus gnterg IMto the body and binds itself to cellular receptors and starts multiplying, leading
todfataljty” a high risk of secondary transmission mandates the need for rigorous contact
tratigg (Gan 2020). In such scenarios, Internet of Things (loT)-based solutions have the potential
to combat the COVID-19 virus by tracking and containing the fomite spaces. The use of smart
solutions based on image and video processing for tracking fomite spaces is beneficial in
restricting secondary spreading in closed environments. Such image processing-based solutions
require high configuration devices for seamless execution. However, adopting legacy and
affordable 10T infrastructures to deploy such monitoring technologies is beneficial.



Pallav
Placed Image

mailto:pallv.deb@iitkgp.ac.in
mailto:aritraban10@gmail.com

Person

sanitizing the
g infected areas
ﬁ @J '
|
Cameras ]
capturing 0 g
activities as "
they occur
| Shared |
fomite spaces I Issue re- samtlzat
:> at centralized | in case of resudu
server fomite

[

ﬁ: % =
Person |

I

l

Detecting
samtlzatlon
and removing

fomite SEaces

Fog nodes

Notifications
sent to
concerned
FO authorities

pUb]lC areas fomite spaces | @
Figure 1.1: Overview of the proposed CO -S(@ scheme.
n

In this chapter, we propose COVI-SCANNER, ag, Aug d Reality (AR)-based fomite
space monitor in closed environments on a fog-enabled | lagform. As shown in Figure 1.1, the
COVI-SCANNER scheme works in two phases: % Contamination and 2. Sanitization. In the
contamination phase, COVI-SCANNER records*the “wideos from the cameras for tracking the
movement of the infected individuals ants the spaces/objects that the person
act, the COVI-SCANNER highlights them
ite places. In the sanitization phase, the COVI-
ials such as brooms, wipes, mops, and others. Upon
detection of these objects, the C§ ANNER tries to detect cleaning activity by the person
interacting with the sanltlzatl objegtS. In case the person starts cleaning and the object passes
through the fomite places @0 d during the contamination phase, it removes the demarcations.

C

interfaces/touches. On detecting any s
(virtually) as potentially contaminateg
SCANNER tries to look for cleaningi

In case the cleaning mplete and all of the demarcations are not removed at the end of
the sanitization plia ANNER raises an alarm and notifies the concerned authorities.
This method aIIo S to ensure the existence of minimal fomite places in public areas and reduce
owards this, we use the readily available machine learning models: 1.

the secondary gpread.
MobiIeNet-i Younis 2020) for detecting the person and objects in the contamination phase,
t

and 203D et’(Hara 2018) for identifying the cleaning activity in the sanitization phase. It may
befhot atwle assume that the concerned authorities have information on the infected individuals
and¥€cognize them using available face recognition techniques (Khan 2019). We further propose
a fog-Dased loT architecture to deploy the proposed COVI-SCANNER scheme on pre-installed
infrastructures. We account for the computational complexity in the AR-based operations and
propose assigning different fog nodes for each contamination and sanitization phase. Since the two
phases share the information on the fomite spaces, we propose storing the points in a shared
database with provisions for real-time updates on highlighting and removal from the two phases.
In this chapter, we propose COVI-SCANNER, an AR-based fomite space monitor in closed
environments to minimize the secondary spreading of the COVID-19 virus. For the ease of



deployment on legacy infrastructures, we propose a fog-enabled 10T architecture comprising of
resource-constrained devices. The major highlights of this chapter are as follows:

e COVI-SCANNER: We propose an AR-based method for tracking and monitoring fomite
spaces to reduce the secondary spread of the COVID-19 virus.

e Modular Operations: As image processing techniques involve complex computations, we
divide COVI-SCANNER into two phases: Contamination and Sanitization. Such modules
helps in reducing the load from the devices.

e loT-Based Architecture: To facilitate easy deployment on resource-constraigedydevices,
we propose an loT-based architecture that assigns dedicated fog nodes for perN ch
phase and sharing their data from a common database server in real-time.

e Evaluation: To show the feasibility of the proposed COVI-S cheme, we
implement and deploy in lab-scale and present the observed result

A

Example Scenario: Consider a closed environment such as 'r als, industries, and any
other environment with cameras installed for monitoring. )igh “environments, fog nodes
assigned for the contamination phase in COVI-SCANNER \n the infected individuals. It
then creates a bounding box around the person and tracks, the pekson, particularly the arms and its
interaction with the nearby objects. In the case of&étin interactions, COVI-SCANNER

marks them as fomite spaces on the screen. On other hand, fog nodes assigned for the
sanitization phase in COVI-SCANNER first identifieS the necessary cleaning objects such as
wipes, mops, brooms, and others to then deteet t eaning activity. As the individual cleans the
regions, COVI-SCANNER tracks the clea@jects and removes the highlighted portions. The
COVI-SCANNER notifies the concer therities in case all the fomite spaces are not sanitized.

The fog nodes operating under e hare their data through a central database server for
simultaneously updating the dat -time.

1.1.1 Motivatio @

The recent outbreak'@f the COVID-19 virus has spread rapidly all around the world. The intangible
nature of the ygfus and%its mode of spread of the droplets in the form of aerosols and contact has
increased &enges of containing it. Current solutions depend on contact tracing and self-
asse me y individuals (Menni 2020), which is not reliable as they may enter false

ioMe@’avoid isolation and containment. The remnants of the virus in an infected individual,

rise to fomite spaces. Healthy individuals acquire this virus by interacting with the same set of
fomite spaces. The virus stays alive on cardboard and plastic surfaces for a duration of 24 hours to
3 days, respectively. Such a lifespan increases the risk of spreading to more number of individuals
each day, which mandates the need for efficient sanitization. The intractable transmission mode of
the virus necessitates loT-based solutions for monitoring and tracking fomite spaces in closed
public areas to reduce secondary spread. Moreover, we propose an AR-based method (COVI-
SCANNER) to combat the secondary spread of the virus. However, image processing techniques



involve complex operations for execution. Facilitating such operations on legacy infrastructures
requires task distribution techniques for seamless deployment. Such issues act as our motivation
for designing COVI-SCANNER and its loT-based architecture. We envision such solutions to help
in restricting the secondary spread of the COVID-19 virus in closed public environments.

The rest of the chapter is organized as follows. We present some of the existing works in literature
and techniques for combating the COVID-19 virus in section 1.2. In section 1.3, we present the

system model. We discuss our observations in section 1.4 and finally conclude in section 1.5.
1.2 OVERVIEW OF TECHNIQUES FOR COMBATING COVID-19
solutidns

In this section, we present some of the current literature on the COVID-19 virus a

towards combatting it. We then present some of the existing works on ¢ ision, human
activity recognition, and fog/edge computing solutions.
A

1.2.1 COVID-19 and loT

The COVID-19 virus needs a week to show initial symptoms of in@ and some do not show

any symptoms at all (asymptotic cases). The authors in (Benre identified the issue and

the significant difference in the documented and the actual ¢ %sitively infected individuals

due to it. They proposed an loT-based solution to trac n individuals and locations they

have been. As healthy individuals visit the same&{io roposed solution warns them of
d

potential infection. Wang et al. (Wang 2020) expl the Social Internet of Things (SloT) for
identifying social relationships and potentially iitegtedsindividuals as they come in contact with

positively infected patients. They used a gretic approach coupled with reinforcement
learning to realize the proposed patient %aﬁon method. Researchers are also exploring

machine learning (ML) methods for g&fbatting the pandemic. Waheed et al. (Waheed 2020)
focused on the lack of data due to t utbreak and the major drawback of the ML methods.
They developed synthetic x-ra %x py considering the effects of the COVID-19 virus and
trained an Auxiliary ClassifieGenesative Adversarial Network (ACGAN) for identifying infected
individuals with high pregiSt®n.§he authors in (Hussain 2020) have provided a comprehensive
description of the ethods’and its role in combatting the COVID-19 virus.

1.2.2 Computer on

In this sectiogy we highlight some of the works in literature focusing on the development of
computer gwisiomy techniques and their applications. Morales et al. (Morales 2019) used a
co na@ VGG-16 network and convolutional LSTM layers to detect violent robberies

C camera footage. Wong et al. (Wong 2020) proposed a novel approach to re-
ication of a person on a campus using multiple CCTV cameras by assigning higher weights
to combinations of parts that helped in re-identification by evaluating the relative performances of
each of these combinations. Khandelwal et al. (Khandelwal 2020) used face detection and person
detection algorithms to raise alarms if people were detected not wearing masks or not following
social distancing rules and also implemented the same in manufacturing plants having multiple
CCTYV cameras.




1.2.3 Human Activity Recognition

In this chapter, we use human activity recognition to distinguish between a normal person and a
person who is cleaning infected areas. This field has seen a lot of research work in recent years
mainly due to the increasing popularity of deep learning. Xu et al. (Xu 2019) proposed a deep
learning model that draws inspiration from the inception network and Gated Recurrent Unit (GRU)
to predict human activity by detecting inputs in the form of waveform data from multiple sensors
attached to the body. Gnouma et al. (Gnouma 2019) proposed to use a dynamic frame skipping
method and used Gaussian Mixture Model for foreground detection, both of which,reduced the
time taken for silhouette extraction which is required for human activity recognitior\
(Noori 2019) trained a Recurrent Neural Network consisting of Long Short Ter

orretal
Is
on the OpenPose dataset to predict activity performed by a human from dif cagpera’angles.
A

1.2.4 Fog/Edge Computing

reducing bandwidth usage and response time. Abdellatif €t a ellatif 2019) discussed the

challenges of using edge computing concepts in healthcare and discussed in depth how

wearable sensors and medical devices on the edge of t rk could be used to monitor the

health conditions of patients while ensuring user&y IS*naintained as well. Cao et al. (Cao
r

2015) proposed a real-time fall detection syste oke patients by dividing the computation
of analytics between smartphones with accelero

Edge Computing helps in keeping computational and storagegri ser to the devices for
t

ving lower computational speed and edge
nodes with higher computational speed to cesand rectify false detections. Barthelemy et al.
ing architecture using a live feed from CCTV cameras
across a smart city by using popular | eight algorithms like YOLO V3 (Redmon 2018) and
Simple Online and Real-time Tragki RT) algorithm to perform object detection and object
tracking respectively. Deb et p 2020) proposed a digital stethoscope SkopEdge for counting

(Barthelemy 2019) proposed an edge comp

)
,

the number of heartbeats b iting the features of edge computing. They proposed sending the
recorded audio in th o@‘b e format based on the network state and the device conditions.
loT devices such ave the potential of addressing the problems in the identification
of the COVID-19

1.2.5 Syntbﬁ
Fro sion in this section, it is evident that 10T solutions have a major role to help combat
i ading COVID-19 virus. These solutions help in tracking the positively infected

jduals and identifying potentially asymptotic carriers based on the locations that they visit.
ally, ML methods also help in diagnosing the patients and categorizing them as infected
or healthy individuals. We also notice that the popularly available pre-trained ML models based
on image processing help in maintaining social distancing and identifying violators. Since ML
techniques involve computationally complex operations, fog/edge computing methods help in
deploying the trained models on resource-constrained devices. Although we notice a myriad of
applications, we observe a lacuna in reducing the secondary spread of the virus from fomite spaces.
Towards this, we propose the COVI-SCANNER scheme using an 10T architecture to first identify




and highlight the fomite spaces (contamination). Then, we propose identifying cleaning objects
and the corresponding activity to trace and remove the highlighted fomite spaces (sanitization).

1.3 SYSTEM MODEL

In this section, we present the loT network architecture adopted for the proposed COVI-
SCANNER scheme along with the information flow. Additionally, we also explain the solution
technique for realizing COVI-SCANNER.

1.3.1 loT-Based Network Architecture for COVI-SCANNER \
sponsible for

We consider a set of pre-installed surveillance cameras C = {ci, Co,...
monitoring the closed environments, as shown in Figure 1.1. The imagesfa
cameras pass through fog nodes before reaching the centralized storage se this chapter, we
consider the routers, switches, and other devices present at the edge of the netWork as fog nodes.
Considering a set of fog nodes F = {f1, f2.. fq}, we split them into tw, ets for performing each
of the two phases in COVI-SCANNER. In other words, Fc c F ég for contamination and

from these

Fs c F fog nodes for sanitization. It may be noted that tig, f s in Fc and Fs may not be
mutually explicit. The fog nodes with high configurations “€Xecute both the modules for
contamination and sanitization, respectively. It may be neted that the selection of the optimal set
of fog nodes is beyond the scope of this chaptefand we Tely on available works on resource
allocation (Tran 2018). Fog nodes executing ntamination routine tracks the infected
individuals and highlight the fomite spaces on %een. It then sends the details of each of the
fomite spaces for storage and access by theffog,neees assigned for the sanitization phase. As the
cleaning activity proceeds and the fog nod the sanitization of the fomite spaces, it removes
the corresponding information from t . The data in the server is simultaneously accessible
by both sets of fog nodes so that the*coreerned personnel may view the results on a screen in real-
time. In case the cleaning actiwi oyer and fomite spaces continue to persist in the region, the
server may issue an alarm f@&‘ymg the concerned authorities.

~
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Figure 1.2: Information flow in the propo S:é ANNER scheme.

1.3.2 Information Flow in COVI-SCANNER \e
Figure 1.2 depicts the information flow among s mentioned in Section 1.3.1. The F fog

nodes determine the fomite spaces and their cQo in the contamination phase (Step 1). They
send the coordinates of the infected regiogs a with the details of the bounding boxes to the
s are accessible by the sanitization phase to keep

centralized servers (Step 2). These copre
track of the cleaning of the fomite spa Q‘ tep 3) and for performing the execution routine (Step
rﬁsr%

4). The fog nodes remove the de d fomite spaces as the cleaning activity proceeds (Step 5).
In the case of residual fomite spacessafiter sanitization, the server notifies the concerned authorities
(Step 6). It may be noted t is no need for manually removing the demarcated fomite spaces
as the sanitization 4 e@automatically remove the same on detecting each sequence of
cleaning activitie 4@ rent Step 5).

1.3.3 Proposgd Solttion

In this se e describe the proposed solution technique and the adopted pre-trained ML
modéls fzing COVI-SCANNER. Conforming to the network architecture in Section 1.3.1
afd the”intOfmation flow in Section 1.3.2, we present each of the phases in COVI-SCANNER
separately in the subsequent sections.

1.3.3.1 The Contamination Module

We execute this module on the F¢ set of fog nodes. We use the MobileNet-SSD network available
in the deep learning module of OpenCV for object detection. The MobileNet-SSD network detects
and returns coordinates of the bounding boxes for 20 classes of objects. Among these 20 classes,
we only use the class labeled as person for our application and ignore the other classes. As



mentioned earlier, we assume that the infected individuals are known beforehand and facial
recognition techniques may be used for detecting them on the screen. We use the person class as
proof of concept for the proposed COVI-SCANNER scheme. The MobileNet class of
convolutional neural networks uses depth-wise separable convolutions followed by 1 x 1 pointwise
convolutions which allows these models to be much more computationally much faster (Howard
2017). This model allows us to detect and draw bounding boxes around all person objects detected
in each frame. This module is entirely run on the contamination devices.

represented by the upper left point (x1 : y1 ) and the lower right point (x ). F

27 y2
the places where each person pi has visited and the interacted objects, we c3
fpi € R? for each person object. We calculate the fpi in such a manner to m@ éithat the fomite
point is nearer to the points in the frame which helps in tracking the clear bjects during the

activity. Mathematically, we calculate fp; as:
@ (1.1)

x+x3 9y2t 1
fpi = ( 2 ' 10 ) %
This fomite point fpiis used for tracking person objects from Bge fféme to the next. Let the set of
all person objects detected in a particular frame j be P! while th set of all person objects detected

in the next frame be PI*%. Let each person object |we j be p € Pl and each person in the next
. 1

frame j+1 be pJ .~ € PI*1, Let fomite point rson object pI be fpjI , such that prI € FJ

Initially, we calculate the Euclidean dlstan between all palrs of fomite pomts in Pl and PI*1, We

define each of the distances such as en fpI and fp i as dist((fp, fp i )). To track each

Each person detected from the developed model pi has its own bcundfng boxxeli tes,
e

person on the screen effective I{F on the following set of rules:

o Already Detected "r
. j 1

|np |f

or any fixed pI , We consider the person to be already detected

j Il c FJ 1
detecte peoplésfrom the previous frame j in the current frame j + 1.

e New Pegson Detection: We demarcate an object as a new person and identities on the

all objects in PI*! that were not mapped as a person in P! in the previous step. This

g"when a new person who was not present in the frame j has just entered in the next
frame j + 1.

e “erminate Tracking: If p'*! remains unassigned to any person object in P! for 10
consecutive frames, then we remove this person pi from the screen and store the list of all
its corresponding fomite points in the centralized server for future reference. This is used

1 to a particular fpji belonging to a person pJi who has

)) is minimum v fp . We use this to rediscover already

to stop trying to find the closest fp
already exited the area of the frame.



1.3.3.2 The Sanitization Module

We execute this module entirely on the set of sanitization fog node (Fs) devices. We pass the
bounding box of each detected person as input to a separate deep learning model to detect whether
the person is performing the cleaning activity or not. If the person is detected to have been
performing the activity of cleaning then its focus point is calculated. Let this focus point of cleaner
person object be fc. Let M € R? be the set of the history of all fomite points of all persons detected
so far. Let mi be each fomite point in M. To remove the fomite points of people in areas where
cleaning activity has occurred we remove all m; from M, such that dist(fc,mi) < Dma
\
i

In our implementation of COVI-SCANNER, we consider Dmax = 50 pixels. We use raified
3D-ResNet deep learning model which is trained on the Kinetics Human A on@ ataset
(Kay 2017) for identifying up to 400 different types of human activitiesfto de e cleaning
activity. Out of all the 400 activity classes, we use only 2 classes of cleafing flogr and mopping
floor and categorize them as cleaning. We do so by taking the previous N*feafnes as input and

predicting the activity in the (N+1)" frame. In this chapter, we N=16 and N=10 while
performing our experiments.

1.4 PERFORMANCE EVALUATION %

In this section, we present our lab-scale experimental®setup @nd present our observations on
deploying COVI-SCANNER on the proposed IoTﬂitect

1.4.1 Experimental Setup

We use two arbitrary systems with i3 ant cessors and assign them for executing the
contamination and sanitization modulg e install the MobileNet-SSD and 3D-ResNet ML
models on the concerned devices and’ ideos from the cameras as inputs in each case. We
use Python 3.7 platform for reali proposed COVI-SCANNER scheme and to present its
performance. K
1.4.2 Results %

In this section, we @ iscuss the performance of the proposed COVI-SCANNER scheme
on deployment. Towgrds this, we first present its output in identifying and removing the fomite

spaces in eachgphase, Tellowed by its corresponding accuracy. We then demonstrate the delay in
executing efc&rfse together with the upload rate for the contamination and sanitization phases

alongywi ownload rate at the centralized server.



Figure 1.3: Identification of fomite spaces contaminated by infected | als in the

contamination phase. :
1.4.2.1 Output from Contamination Phase @

We capture one of the instances from the contamination ph %entioned earlier, we assume
that the identity of the infected individuals is known befgrehandiand they may be identified using
available face recognition techniques. In this chapter, sider any random person to be
infected with the COVID-19 virus for proof of co t. We observe in Figure 1.3 that COVI-
SCANNER detects a person on the screen (bougdi ). As the person moves (steps 1 through
4), the contamination routine highlights the fl@orfas/omite space with several fomite points (red
dots). We comment that the proposed COWA-S NER identifies the fomite spaces efficiently.
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Figure 1.4: Removal of the fomite spaces identified in the contamination phase on detection of
cleaning activity in sanitization phase.



1.4.2.2 Output from Sanitization Phase

We capture the same instance corresponding to that in Section 1.4.2.1. We observe in Figure 1.4
that the sanitization phase in COVI-SCANNER first identifies an individual (bounding box) and
then the broom. Upon detection of the cleaning activity, the COVI-SCANNER starts removing the
fomite spaces. At the end of the cleaning activity (steps 1 through 4), we observe that almost all
of the fomite spaces are removed as the cleaning object passes through them. We may safely
comment that the proposed COVI-SCANNER works efficiently in tracking the sanitization of the
detected fomite spaces.
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Figure 1.5: Number of fomite sp detected and removed on execution of each phase.
1.4.2.3 Detection and Removal | e Spaces

We perform a cumulatlve C &: e fomite points with each iteration for each of the phases. We
observe in Figure 1 ber of fomite spaces increases linearly in the contamination
phase. This is be @ ach progress in the execution, the contamination routine keeps
tracking the infecte@idfidividual and marks the fomite spaces. On the other hand, we notice that on
the detection the )ganing activity, the sanitization phase removes the corresponding fomite
points efficieftly. We notice almost 80% removal of the fomite points. We observe a steep

decrease i nmber of fomite points as the cleaner enters the scene for the first time. This is
begduse,t ite points near the cleaner initially get removed in bulk, compared to the later time
ins . Although we observe significant removal of the fomite points, we hardly notice 100%

removal of the same. Intuitively, this may be because the cleaning object does not pass through all
the fomite points or it may be due to the accuracy limitations of the pre-trained models. In the next
section, we present the accuracies in each phase.



Table 1.1 Accuracy, precision, recall, and F1-score of the COVI-SCANNER scheme.

Videos Accuracy Precision Recall F1-Score
Video 1 82.75% 85.71% 80.00% 82.75%
Video 2 81.08% 85.25% 76.47% 78.78%
Video 3 82.05% 85.35% 77.77% 79.99%
Mean values 81.96% 85.43% 78.08% 80.51%
1.4.2.4 Accuracy of the COVI-SCANNER Phases \
uracy

We arbitrarily use 3 videos as inputs to the COVI-SCANNER routine and tabula

scores in Table 1.1. We briefly define each of the columns for understandinggtine e%\ccuracy
is the quality of correctness of the proposed scheme. Precision represents @ identified
results and recall represents the number of correctly identified points in comgparison to the actual
one. The F1-score is the harmonic mean of the precision and recall results, represented as F1 =
2/(recall*+precision™). On average, we observe an accuracy of 81%®quire the precision and

recall values to identify the reason behind such low accuracies.% ie€ that on average, COVI-

SCANNER has a precision of 85% which suggests that it ifly high rate of fomite space
detection. However, we observe low recall values of 78%, suggesting that the COVI-SCANNER
identifies fomite spaces that may not be contaminated. Int@itively, we attribute this behavior to the
occlusions that may be present in the video and that 8 the accuracies of the pre-trained MobileNet-
SSD and 3D-ResNet models with 80% and 75%#™espectively. In the future, we plan to address
this issue and increase the accuracy of the pro @Q)VI-SCANNER scheme.

1.8;

Q e—e N =10

~
£ 14

"” (I

0.4
| {

é o2llld | AL _ | | |
0.0 ‘ 200 300 200 500

0 100

~
o ¥
)

Frame Number

Figure 1.6: Delay in processing each frame with varying N.
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Figure 1.7: Delay in processing the frames in the contaminat':or@anitization phases.

1.4.2.5 Delays in Executing COVI-SCANNER and its Ph

Execution of image processing routines involves complédcomputations. We account for the high
resource demand and propose executing the phase$in the I-SCANNER scheme periodically
after every N frames. Figure 1.6 depicts the timee\in seconds for each frame to be processed
in the fog nodes. We observe spikes of almost 1%@ ds after the N frames due to the delays in
acquiring results from the pre-trained activi 00N models. As expected, we observe in Figure
1.6 that the frequency of the spikes decree increase N from 10 to 16. This is because of
the frequency of the execution of the g -SCANNER routines. However, the performance of
the COVI-SCANNER starts dete% gt N is increased as it will miss demarcating most of the

fomite spaces, implying the exist f a tradeoff between accuracy and the processing delay of
COVI-SCANNER. In thisc z&

limit our experiments up to N=16.
We present 3 lar ipsight into the delays necessary for executing each phase. In Figure
1.7, we observe€ he sanitization phase endures more delay compared to that of the
contamination phase®[ his is because the cleaning activity detection model in the sanitization phase
requires morgftime to process as it needs to identify the person, the cleaning objects, and the
activity t erson identification and tracking module (contamination). This is because the
ation p

sanig#zati Nase identifies the person and the object and then the cleaning activity. The
canta hase on the other hand only needs to identify the person and then start tracking.
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Figure 1.8: Upload rate in both contamination and sanit@ fog nodes.
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re 1.9: Download rate at the centralized storage server.

1.4.2.6 Upl nd Download Rates

WegCapt upload and download rates using the command line application iftop available in
L Istributions. We observe in Figure 1.8 that the contamination phase needs a higher upload
rate Imost 800 Kbps, compared to that of the sanitization phase. We observe this variation in
the upload rates as the sanitization phase sends only the information about the time instants and
coordinates of the fomite points for removal. The contamination phase needs to send the video
along with the fomite points while uploading the data for storage at the centralized server.
Corresponding to the upload rates from the fog nodes, we observe a maximum download rate of
700 Kbps at the centralized server in Figure 1.9. Such high data rates at the fog nodes and the
centralized servers are common because of the large size of videos and images from the cameras,



implying the dependency of the proposed COVI-SCANNER on the quality of the network. In the
future, we plan to use lightweight streaming protocols to reduce the data rates for each device.

1.5 CONCLUSION

In this chapter, we proposed an AR-based solution named COVI-SCANNER for limiting the
secondary spread of the COVID-19 virus in closed public environments. COVI-SCANNER works
in two phases: contamination and sanitization. In the contamination phase, COVI-SCANNER
identifies the infected individuals and tracks them to detect fomite spaces and highlightithem

accordingly. In the sanitization phase, COVI-SCANNER identifies the cleaning ob the
corresponding cleaning activity to remove the fomite points from the contaminatio . In the
case of residual fomite points on the screen after the cleaning activity is comp t%tralized
server notifies the concerned authorities for re-sanitization. We achieve

ie identifieation of the
individuals and the concerned activities using pre-trained MobileNet-SSD and 3D-ResNet models.
Through deployment and extensive experimentation, we presented the efficiémey of the proposed
COVI-SCANNER scheme along with the necessary delays and d tes. We hope that with
solutions like COVI-SCANNER, we may restrict the secondary r@the COVID-19 virus in
public places and ensure its sanitization.

In this future, we plan to extend this work bySincreasig the accuracy of detecting and
removing the fomite points. Additionally, we also pla jncorporate lightweight streaming
protocols to reduce the data rates at the fog nodes anel the centralized server.
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