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Abstract—In this paper, we propose a dynamic consensus-based
blockchain system – A-Blocks – for efficiently managing the data
produced by the sensors in an Industrial Internet of Things (IIoT)
environment. Typically, industries deal with a heterogeneous set
of data from a diverse range of sensors. Conventional blockchain
adoptions are a popular choice in such scenarios for data security
while satisfying both transparency and immutability. However,
stringent consensus algorithms are inadequate for managing
heterogeneous data, especially due to its implicit constraints.
For instance, while PoW provides inevitable security and is
highly distributive, it is not scalable and requires more energy.
In contrast, PoS is energy-efficient but has reduced scalability
and PBFT is suitable for faster processing. A-Blocks exploits the
features of the available consensus algorithms and dynamically
selects the best one in real-time. It operates in two phases: 1)
Categorizing the data into groups based on their traits and
then 2) Selecting the appropriate consensus algorithm. Extensive
experimental results using open industrial datasets demonstrate
the effectiveness of A-Blocks with 8% CPU and 78% memory
consumptions on resource-constrained devices. Further, com-
pared to existing methods, although A-Blocks increases energy
consumption by 11%, it also reduces mining time by 7%.

Index Terms—Blockchain, Consensus algorithms, Agglomerative
Clustering, Industrial Internet of Things.

I. INTRODUCTION

Deployments in Industrial Internet of Things (IIoT) environ-
ments involve the exchange of sizeable heterogeneous and
sensitive data over the Internet (both private and public).
Data security in such scenarios is a mandatory obligation
to avoid data breaches and facilitate smooth processing. The
adoption of cryptographic methods may not be suitable in
such scenarios due to compulsory secured key exchange,
and iterative encryption and decryption overheads. Further,
the breaking point of the cryptographic methods depends
upon the length of the key, which also adds to the tradeoff
of managing long keys. For instance, operations in AES-
128 and AES-256 needs 10 and 14 rounds, respectively. To
organize the divergent data and provide security, blockchain
is a one-stop solution that ensures security, immutability, and
transparency. However, traditional blockchain with a single
consensus algorithm is not suitable in dynamic scenarios such
as IIoT. This is because data produced by the sensors may
vary in terms of sampling rate, entropy, volume, and range.
Stringent consensus mechanisms fail to exploit the advantages
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Figure 1: Overview of the proposed A-Blocks system and
dynamic selection of consensus mechanisms.

of the others, which leads to decisions that may not be suitable
for the incoming data causing daunting effects on delay, power
consumption, and processing routines. In summary, a system
that employs consensus algorithms according to the nature of
the incoming data is beneficial.

In this work, we propose A-Blocks, a method for dynamically
selecting a consensus routine based on the attributes of the
incoming data in real-time for blockchain-enabled IIoT envi-
ronments. As a proof of concept, we consider the Proof of
Work (PoW), Proof of Stake (PoS), and Practical Byzantine
Fault Tolerance (PBFT) consensus methods. In A-Blocks, the
sensors in an environment such as in Fig. 1 produce a hetero-
geneous set of data and forward it to the blockchain system
through a middleware (a gateway connecting the machines to
the blockchain). The middleware forms clusters based on the
variability, sampling rate, and range of the incoming data.
The middleware is also responsible for the selection of the
appropriate consensus mechanism and the creation of the
blockchain. The authorized users may then fetch the data from
the appropriate blockchain (refer Fig. 1). The proposed A-
Blocks method is not limited to industrial scenarios and may
be extended to smart cities, smart homes, healthcare, power
plants, and security surveillance deployments for efficient data
management and secure sharing.

A. Bias for clustering and dynamic consensus mechanism

The incoming data from sensors in a typical IIoT deployment
is often subject to problems due to incomplete, corrupt, and
incorrect formats, leading to inconsistencies. The attribute
correction method-based clustering approach [1] helps in
overcoming such issues with ease by removing the outliers
from the clusters. This eases the decision on the appropriate
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consensus mechanism. The dynamic consensus mechanism
helps in exploiting the benefits of multiple consensus algo-
rithms in a single system such as scalability, enhanced security,
and decentralization and a single consensus mechanism is
inadequate for managing the trade-offs between them.

B. Motivation

Managing the data from a plethora of devices in an IIoT
environment is challenging. These data are useful for making
inferences in applications such as tracking jobs, defect identi-
fication, quality assurance, and maintaining supplier relations.
While industries deploy various types of sensors to fetch data
from the devices, the data is often divergent which increases
the difficulty of removing inconsistencies and redundancies.
This motivates us to segregate data into clusters with similar
attributes. Moreover, there is a need for more decentralization,
transparency, and scalability in industries and blockchain with
a single consensus algorithm cannot provide this as there is
trade-off between scalability, decentralization and security. It is
also not efficient to store heterogeneous data using blockchain
with a single consensus algorithm. These issues motivate us
in developing the proposed A-Blocks system with a dynamic
consensus algorithm for 1. storing the heterogeneous data
efficiently in different blockchains with varying consensus
mechanisms 2. ensuring low mining and response time.

C. Contribution

In this work, we propose A-Blocks, which is a dynamic
blockchain system for the efficient management of data pro-
duced by sensors. The heterogeneous sensors produce variant
data, which causes inconsistencies, and one solution for all
does not suffice in handling all of them. We apply clustering
to identify the category of incoming data and forward it to the
blockchain using a suitable consensus mechanism. The major
highlights of this work are as follows:

• A-Blocks: We propose A-Blocks for dynamically select-
ing the consensus mechanisms based on the attributes
of data which is necessary for storing heterogeneous
data efficiently by reducing the response and mining
time. Further, A-Blocks eliminates the trade-off between
scalability, security and decentralization by selecting the
appropriate consensus algorithm.

• Data Categorization: We adopt agglomerative clustering
to identify the category of the data using its attributes
such as values, variability, and sampling rate. This is
necessary for providing the best match of consensus
mechanism according to the above mentioned attributes.

• Robustness: A-Blocks dynamically selects the consensus
mechanisms according to the requirement of data and is
independent of deployment architecture. It is suitable for
every type of data that make it feasible for the industries
incorporating with heterogeneous data.

• Evaluation: We discuss our observations while deploying
A-Blocks on the resource-constrained devices such as a
network of Raspberry Pis and demonstrate its advantages
over conventional blockchain practices.

It may be noted that, in this work, we focus on the data-centric
selection of the consensus mechanism in the blockchain and
refrain from considering pricing policy and storage mecha-
nisms. We plan to include the same in our extended work.

The organization of the rest of the paper is as follows. Section
II contains the various research works done by the researchers
in the field of clustering and blockchain. Section III describes
the system model and the proposed solution. Section IV
discusses the experimental setup, results, and the comparison
of the proposed approach against other approaches, followed
by the conclusion in Section V.

II. RELATED WORK

A. Clustering and Blockchain for IIoT

Jia et al. [2] proposed a clustering method that clusters data
based on a subset of attributes. He considered both numerical
and categorical data and presented an attributed weighted
clustering model to improve the stability and accuracy of data.
Liang et al. [3] proposed a model to estimate the number
of clusters. They proposed a hyper-correlation structure that
affirms the compactness between the samples. Based on the
triplet relationship, he calculated clustering assignments.

Pass et al. [4] proposed fruitchain protocol that did not
store data directly into the blocks rather put the same inside
the fruits. To access the data from the fruits, we need to
solve the proof of work with different hardness parameters
from the PoW used by the blocks. Bai et al. [5]proposed a
blockchain system for IIoT with an off-chain network and on-
chain network. They used an on-chain network to process all
the transactions, such as providing permission and adding a
digital signature. Rather, he used an off-chain network for
storage and solving the problem which is not solved by
blockchain. Further, Wang et al. [6] proposed chain-splitter,
where the majority of the data is present at the clouds. They
proposed hierarchical storage where only the recent blocks
of the blockchain are present at the overlay network and rest
at the cloud. Elli et al. [7] proposed a distributed operating
systems for blockchains that follows execute-order-validate
paradigm. Only the subset of peers executed the transactions,
and whenever the client received enough endorsements, it
assembled the transactions and submitted them to the ordering
phase. Biswas et al. [8] proposed Proof of Block and trade
before committing them. He used a lightweight consensus
algorithm which is based on the miners present in the session.
Xu et al. [9] proposed origin-chain having three types of users,
including the administrator, traceability provider, and service
user. They created three layers, i.e., management layer, off-
chain, and on-chain. On-chain is responsible for implementing
consensus, whereas off-chain is responsible for storing data.
Lallas et al. [10] proposed a blockchain ledger for effective
communication between the IoT devices and also improved
supply chain services. The proposed framework is integrated
with the decentralized cloud network of Industry 4.0. The
proposed architecture hides the heterogeneity of application by
acting as an upper abstraction layer, making the supply chain
network more efficient. Further, Dua et al. [11] proposed a so-
lution for managing e-waste by using 5G enabled blockchain.
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Blockchain is used to keep track of e-waste generated and
to dispose of it in an environment-friendly manner. Lamass
and Carames [12] structured the benefits of using blockchain
for Industry 4.0 to enhance transparency, robustness, data in-
tegrity, security, traceability, and anonymity. Similarly, Huang
et al. [13] proposed a blockchain system using a credit-based
consensus algorithm. In the proposed work, the proof of work
is based on a credit system. Further, directed acyclic graph-
structured blockchains are used to improve efficiency.

B. Blockchain for secure data sharing

Misra et al. [14] proposed a blockchain for boosting security
in the IoT environment. An encrypted networked clock is im-
plemented within the blockchain to synchronize non-real-time
IoT nodes. Wang et al. [15] proposed two-layer blockchain
architecture which used Byzantine Fault Tolerance as a con-
sensus algorithm and combined various local blockchains with
one state blockchain. Lin et al. [16] integrated the attribute sig-
nature with blockchain to provide fine-grained access control
and mutual authentication. They provided confidentiality by
using multi-receiver encryption. Srinivas et al. [17] proposed
LBRAPS, based on one-way hash and bitwise XOR to secure
data from various attacks. He used it to make the RFID
system secure and ensured that RFID data should not be
leaked. Further, Bera et al. [18] proposed a grid system for
securely providing services by forming peer to peer network.
The peer nodes gathered the data and added the same to the
blockchain. Further, a system called BOSMOS for software
status monitoring based on blockchain is proposed by Sen Hi
et al. [19]. The system’s snapshot is stored in the blockchain,
which is used to identify malicious behavior. A method for
monitoring the status based on the block hashing chain is
proposed. Both, PoW and PBFT algorithms are applied to
explain the working of the blockchain.

C. Synthesis

Blockchain, when applied to IIoT, suffers from various chal-
lenges such as managing heterogeneous data, trade-off be-
tween scalability, security, and decentralization. The data from
the sensors present is subject to non-uniformity in terms of
variability, sampling rate, volume, and others. Conventional
blockchain-based practices in literature do not consider varia-
tions in these data. Data security in such scenarios is a manda-
tory obligation to avoid data breaches and facilitate smooth
processing. Utilization of cryptographic methods results in
extra overhead of iterative encryption and decryption. Also,
the dynamic requirements of heterogeneous data, in terms of
processing power, security, and energy requirements are not
fulfilled by a single consensus algorithm. As shown in Table I,
the existing works do not consider the selection of consensus
mechanisms dynamically based on the requirement of data
as well as there is also a trade-off between heterogeneity,
scalability and energy consumption. In this paper, we propose
a method for selecting consensus algorithms dynamically
which considers the above mentioned features in a single
system. We perform agglomerative clustering to segregate the
data having similar traits into groups and apply blockchain

Table I: Difference of A-Blocks with some existing works.

Paper Dynamic
consensus Heterogeneity Energy requirements Scalability

Lallas et al. [10] × X × ×
Wanget al. [15] × X X X
Biswas et al. [8] × × X X

Elli et al. [7] × × X ×
Xu et al. [20] × × × X

A-Blocks X X X X

with a dynamic consensus algorithm based on the nature of
the incoming data from sensors.

III. SYSTEM MODEL

In this section, we introduce the network architecture, delay
model, energy model of the system, preliminaries required to
propose the scheme, and then propose a method to select the
consensus algorithm dynamically based on data traits.

A. Network Architecture

We consider a set of sensors to sense the data produced
by various IIoT devices and represent them as S =
{s1, s2, s3, . . . , sn}. These sensors sense data and forward it
to the middleware for categorizing into groups with similar
traits. The clustering layer (middleware) organizes the data
into various clusters based on its attributes such as sampling
rates, value ranges of data produced by multiple sensors, and
variability. We use agglomerative clustering to categorize the
data into various groups. The clustering layer (middleware)
further forwards the data to the blockchain system, which
selects the appropriate blockchain from the set of blockchains
B = {b1, b2, b3, . . . , bn} implementing various consensus
algorithms. We use PoW, PoS, and PBFT consensus algorithms
for implementing the blockchains as proof of concept. We
select consensus algorithms based on the attributes of data.
Since PoW provides ultimate security, PoS is energy-efficient,
and PBFT is fast. Therefore, the data which require extreme
security use PoW, the data which require more energy use PoS.
In contrast, the information high sampling rate, use PBFT. The
authorized user uses the data from the blockchain and utilizes
it in various applications such as job tracking, creating stocks,
fault tracking, and establishing relations with suppliers.

B. Delay Model

The delay in offloading data depends on the delay in uploading
the data and downloading the data. We only upload data in
our architecture and consider the delay is downloading as
0. Further, the delay in uploading the data depends upon
the transmission delay, propagation delay, queuing delay, and
processing delay. The sensors transmit the data to the next
layers and we calculate the delay involved in this as T θtrans =
lθ/du,v , where lθ is the data size of θ and du,v is the data
rate between two layers u and v. We further calculate the data
rate as du,v = βlog2(1 + pugu,v/(σ

2 + Iu,v)), where β is the
bandwidth of the channel, gu,v is the channel gain, Iu,v is the
inference gain and pu, as well as σ, is the transmission power
and noise power respectively. The propagation delay depends
upon the propagation delay of various links and is represented
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as T θprop = Σu,vεLδu,vx
θ
u,v , where δu,vεL is the propagation

delay of the link and xθu,v represents the link selected for
offloading the data θ. The queuing delay involved in offloading
the data depends upon the arrival αθ and departure rate λθ

of the data θ and is represented as T θqueue = 1/(λθ − αθ).
The processing time depends upon the time taken to cat-
egorize data into groups, select the appropriate blockchain,
and mine the data block. We calculate the processing time is
as T θpt = (tθcluster/γ) + (tθselect con/ω) + (tθmine/η), where
tcluster is the time taken in categorizing the data θ in the
appropriate cluster, γ is the processing capacity of the node
performing clustering, tselect con is the time taken to select the
appropriate consensus algorithm, ω is the processing capacity
of the blockchain system, tmine is the time to add the block to
the blockchain and η is the processing power of the blockchain
used. We calculate the delay for uploading the data as:

T = T θtrans + T θprop + T θqueue + T θpt (1)

C. Energy Model

We consider that the blockchain requires a computation task
at a time to add blocks. To calculate the energy utilized by
the blockchain system to add blocks into the blockchain, we
use the energy consumption model described in ε = κ × ζ2,
where κ is the energy coefficient depending on the chip used
in the system, and f is the frequency of the processor used
in the system. The energy utilized depends on the workload
(wθ) to add the data θ into the blockchain. We calculate the
workload to add a block using the CPU usage required for the
same. Further, we calculate the overall energy consumption to
add blocks into the blockchain as:

E = κ× ζ2 × wθ (2)

D. Preliminaries

We give a brief introduction to clustering and consensus
algorithms in this section.
1) Clustering: Clustering determines the intrinsic grouping
present in inconsistent data by partitioning the data sensed by
various sensors based on its attributes. We use agglomerative
clustering, which takes input from various sensors such as
pressure sensors, temperature sensors, humidity sensors, and
photodiodes and categorizes the data based on sampling rates,
variability, and the value range. Initially, each data element
is separate, and this algorithm calculates the dissimilarity
between each data element using Euclidean Distance:

|a− b|2 =
√

Σi(ai − bi) (3)

The weights are various parameters such as sampling
rates(SR), variability(v), and the value ranges(vr). The formula
for Euclidean distance according to our data is given as:

|a−b|2 =
√

Σi((vai − vib) + (vrai − vrib) + (SRai − SRib))
(4)

Further, we calculate the centroid C of the new cluster formed
by joining clusters having centroids Cs and Ct using C =
|Cs − Ct|. These become new data points, and this method
further merges the clusters considering these data points.

2) Blockchain: The blockchain is the distributed database
consisting of blocks of all the transactions which builds trust
through five attributes: 1. Distributed, 2. Secure, 3. Trans-
parent, 4. Consensus, and 5. Flexible. Blockchain achieves
reliability because of the consensus algorithm as all the miners
reach a common agreement using various consensus algo-
rithms such as PoW, PoB, PoS, PBFT. As proof of concept, we
use three consensus algorithm to implement our blockchain.

• Proof of Work: This consensus algorithm utilizes math-
ematical puzzles to reach a standard agreement. The
miner who solves the puzzle with less value than the
hash of the block mines the next block. The computation
power depends upon the number of nodes present in the
environment. Since all miners solve a complex problem
to reach an agreement, the energy consumption in PoW
is very high. For instance, the miner who can produce
a number (P) whose sum with previous proof (PPoW) is
divisible by seven can only add a block to the blockchain.
The value of the new proof is one more than the last proof
as represented in the equation:

P = PPoW + 1 (5)

• Proof of Stake: The miners validate the block by betting
on it and get a reward proportionate to their bets and,
accordingly, increase their stakes. The miner with a high
economic stake adds a block to the blockchain.

• Practical Byzantine Fault Tolerance: The system reaches
an agreement even if some nodes in the system are faulty.
The system reaches an agreement if more than one-
third of the miners are honest. This algorithm requires
R number of nodes to handle f faulty nodes to reach an
agreement and is represented by the equation:

|R| = 3× f + 1 (6)

• Blockchain Models: There are two types of system mod-
els for blockchain: 1) Permissioned, 2) Permissionless. In
permissioned blockchain, prior permission is required by
the miners to participate in the consensus process. Un-
like permissioned blockchain, permissionless blockchain
does not require prior authorization to participate in the
consensus process. We propose a system that is semi-
permissioned. As proof of concept, we use PoW, PoS,
and PBFT. The blockchains using PoW and PoS are
permissionless, whereas PBFT is permissioned.

• Attack Models: Blockchains are secure ledgers; various
attacks are possible on blockchains such as Sybil At-
tack, Byzantine, and Crash Attack. The possibility of
attacks on the blockchains depends upon the consensus
algorithms used. In Sybil Attack, multiple copies of a
system are created to gain dis-appropriate influence in
the miners’ network. The possibility of a Sybil attack on
the blockchain using PoW and PoS is almost negligible,
whereas PBFT is susceptible to Sybil attacks. Further, in
Byzantine Attack, the malicious nodes have control over
the authenticated nodes, whereas, in crash attacks, the
network is flooded with many requests, and the server
cannot fulfill the demands. The possibility of a crash and
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byzantine attack on the blockchain using PoW is 50%,
PoS is 50%, and PBFT is 33%.

E. Proposed Solution

We consider an industry deployed with many sensors that
sense data produced by various IIoT devices present in the
industry. The data produced by these sensors is heterogeneous
and is challenging to manage. To manage this, firstly, we use
agglomerative clustering to group similar data into clusters. It
is easier to collect comparable data as compared to the data
which is not identical and inconsistent. Further, the clustering
layer forwards the data to the blockchain system, where the
blockchains with dynamic consensus algorithms store the data.
As proof of concept, we use three blockchains using PoW,
PoS, and PBFT, respectively. The delay involved in offloading
the data is given by equation 1 whereas the energy required to
add data to the blockchain is given by equation 2. The cluster
which requires an ample amount of security uses blockchain
with PoW to store its data. At the same time, the transactions
that do not need confirmations to use blockchain with PBFT
and the data require a large amount of energy use blockchain
with PoS as it is an energy-efficient consensus algorithm. The
blockchain system decides the appropriate type of consensus
algorithm for the clustered data. The job tracker fetches the
data stored in the blockchain to track the jobs in industries.

Algorithm 1: Algorithm for selecting blockchain with
dynamic consensus algorithm.

Input: Heterogeneous data sensed by sensors
Output: Jobs status
Procedure:
while sensors siεS senses data do

Perform agglomerative clustering;
if cluster of data is Type 1 then

Store data in blockchain 1 with PBFT;
end
if cluster of data is Type 2 then

Store data in blockchain 2 with PoS;
end
if cluster of data is Type 3 then

Store data in blockchain 3 with PoW;
end
// chooses appropriate blockchain based on

attributes of data

end
while blockchain biεB do

while block is not Null do
fetch each data element and track

end
end

1) Selection of Consensus Algorithms: The middleware, after
performing clustering, selects the appropriate consensus algo-
rithms based on the attributes of data. Since PoW provides
ultimate security, PoS is energy-efficient, and PBFT is fast.
Therefore, the data that require extreme security use PoW, the
data that need more energy use PoS, whereas the data require

faster transactions, i.e., the data with a high sampling rate use
PBFT. For instance, cluster 1 and cluster 2 contain the data
of photodiodes and humidity sensors, respectively. Whereas
cluster 3 contains the data of temperature, pressure, and ex-
haust vacuum sensors as their value ranges and variability are
relative. Further, cluster 1 applies PBFT as the sampling rates
of these sensors are very high, and waiting for confirmations
for adding data for these sensors leads to data loss. Cluster
2 applies PoS, as the variability of photodiodes and humidity
sensors is very high, and it requires a high amount of energy
to handle these data. To provide an energy-efficient solution
to handle these data, it is necessary to use energy-efficient
consensus such as PoS. Further, cluster 3 uses PoW as even a
single-digit corruption leads to a significant change in the data,
which results in various hazards as shown in Algorithm 1. To
prevent this, it is necessary to utilize the consensus algorithms
(PoW), which provides ultimate security.
2) Complexity: The time complexity of agglomerative clus-
tering is O(n2logn) where n is the number of data elements.
Further, we apply the consensus algorithms, which depend
upon the number of nodes present in the network. The com-
plexity of PoW relies on the number of nodes, whereas in PoS,
there are no miners. The computational power in PoS depends
upon the stakes present in the wallet of the validator. Further,
the complexity of PBFT relies on the number of messages
exchanged (m) as well as the number of nodes (k) and is
represented as O(mk).

Proposition 1. Irrespective of energy-constrained devices, A-
Blocks is an optimal solution for heterogeneous data.

Proof. Typically, industries deal with a heterogeneous set
of data coming from a myriad range of sensors S =
{s1, s2, s3, . . . , sn}. Handling these data using a single con-
sensus algorithm is challenging due to the varying attributes
and applications. A single consensus algorithm is not suitable
for overcoming the challenges pertaining to the heterogeneous
incoming data. A-Blocks dynamically selects the consensus
algorithm and distributes the load and data over various nodes
No = {n1, n8, n15, . . . , nn−3}. Further, A-Blocks according
to the need of data utilize the consensus algorithm, which
reduces the energy requirement and make A-Blocks suitable
for energy-constrained devices.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

In this work, we evaluate the proposed A-Blocks system using
a set of resource-constrained Raspberry Pi devices. We set
up the network using wireless communications (Wi-Fi) and
consider a client-server-based system. The client system sends
the sensors’ data to the middleware, which clusters the data
and selects the suitable consensus algorithm for the data based
on its attributes. Further, the middleware sends the data to the
appropriate blockchain server which stores the data according
to its properties. We use Python 3 for executing our routines.
We use the combined cycle power plant data set [21] for
performing our experiment. We consider various sensors such
as temperature sensors, pressure sensors, humidity sensors,
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Table II: Various types of data.

Data type Type 1 Type 2 Type 3 Type 4

Description

Data with
high

sampling
rates

Data with
high

variability

Data with
average

variability
and sampling

rates

Random
data

generated
by the
sensors

Table III: Comparison of A-Blocks with existing works.

Scheme Centralized/
Decentralized Consensus No. of

Miners
Block
Size

Yao et al. [22] No Static No Dynamic
Hei et al. [19] Yes Static No Dynamic
Cui et al. [23] Yes Static Yes Dynamic

A-Blocks
(proposed) Yes Dynamic Yes Dynamic

exhaust vacuum sensors, and photodiodes to sense data. We
recognize three attributes: 1. value ranges of data produced,
2. variability, and 3. sampling rates to categorize the data into
various groups. We use three blockchains with three different
consensus algorithms to store three different types of data as
described in Table II. Type 1 data is the data of photodiodes
and belongs to cluster 1. The sampling rate of Type 1 data
is very high. Similarly, Type 2 data belongs to cluster 2 with
high variability and is the humidity sensor data. The Type 3
data we obtain from temperature sensors, pressure sensors, and
exhaust vacuum sensors are categorized into cluster 3.

B. Results

1) Comparison with existing schemes: The A-Blocks system
is a dynamic consensus algorithm that selects the blockchain
according to the traits of incoming data. To achieve this, it
takes into account the varying block size, number of miners,
data types, sampling rates, and variability of data. As shown
in Table III, the current solutions in the literature do not focus
on the data variability and A-Blocks handles it with increased
efficiency by dynamically selecting the appropriate consensus
algorithms. For instance, the methods such as in [19], [22] are
static, centralized, and do not consider the varying number
of miners which restricts the proper management of data.
On the other hand, A-Blocks overcomes the aforementioned
restrictions as it is decentralized, dynamic, and accounts for
the varying number of miners as well as blocksize.
2) Clustering and data management: A-Blocks categorizes
data into three types as mentioned in Table II by using
agglomerative clustering and Fig. 2 represents the confusion
matrix of the same. It categorizes the data with an overall
accuracy of 78%. In particular, we observe that A-Blocks
correctly identifies Type 2 and Type 3 data. However, in
the case of Type 1 data, A-Blocks identifies it as Type 2.
Intuitively, this is because the value ranges of Type 1 and Type
2 data are similar. However, due to the similarity in the value
ranges of Type 1 and Type 2, the decision on the clustering
mechanism does not have adverse impact. This is because, we
apply PBFT for Type 1 as its sampling rate is high and PoS for
Type 2, which also supports data with high sampling rate. We
comment that the current classifier successfully identifies the
data category, particularly for Type 2 and Type 3. However,

Figure 2: Confusion matrix of clusters formed for three
different types of data.

(a) CPU. (b) Memory (RAM).

Figure 3: Resource utilization by the devices.

some tuning may improve the developed model for improving
the identification of Type 1 data.
3) CPU Usage: We record the CPU consumption while
executing A-Blocks and compare them with solutions that
use any one of PoW, PoS, and PBFT as the possible mining
techniques and perform 40 iterations for each experiment. We
observe that for Type 4 data (random data which is more likely
to be generated in industries), A-Blocks shows a minimum
increases in the CPU utilization by 5% (average), compared
to conventional methods (Fig. 3a). We attribute this increase to
the routines responsible for clustering and then the consensus
algorithm. We also observe that Type 1 and Type 2 data
blockchains with PBFT and PoS require more CPU because of
their high sampling rates and high variability. In particular, the
CPU utilization for Type 1 data with PBFT is 6.4%, and Type
2 data with PoS is 6.8%. On average, the CPU utilization of A-
Blocks for Type 4 data is 8%. We infer from our observation
that the choice of an appropriate consensus algorithm for a
particular type of data is crucial towards CPU utilization.
Further, Raspberry pi devices have a 1.2 GHz CPU with 4
cores and A-Blocks demonstrates a maximum requirement of
only 8%, which is nominal. We comment that A-Blocks is
suitable for resource-constrained devices.
4) Memory Usage: We record the memory consumption used
by A-Blocks to execute its routine and observe that it utilizes
approximately 80% of the memory as shown in Fig. 3b. On the
other hand, Pow, PoS, and PBFT utilize memory only 74.5%,
79%, and 77.3%, respectively. This behavior is because the A-
Blocks execution routine uses three different blockchains in a
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Figure 4: Energy consumption in the blockchain.

single system, which requires extra memory. The clustering
technique also needs some memory for its execution which
improves memory utilization. We entail from our observation
that the selection of an appropriate consensus algorithm for
a particular type of data is crucial to utilize memory more
efficiently. On average, A-Blocks requires 3% more memory
for Type 4 data compared to conventional methods. Raspberry
pi devices have 1 GB of RAM and 3% is a diminutive increase,
which is acceptable. In continuation to our observations in
Section IV-B3, we comment that A-Blocks is suitable for
resource-constrained devices.
5) Energy Consumption: We explore the energy for gener-
ating the blocks and adding the blocks with the A-Blocks
system and we calculate it according to Equation 2. We use
the CPU consumption from the observations in Section IV-B3.
As expected, we observe in Fig. 4 that on average, A-Blocks
requires 10J to add data blocks in the appropriate blockchain,
which is 2J (average) more as compared to other schemes.
We attribute this increase to the same comments as in Section
IV-B3. We imply that the energy consumption increases as the
number of computation tasks increases.
6) Mining Time: Mining time is necessary for generating
and adding blocks into the blockchains. The mining time
is directly proportional to the number of miners present in
the network, which validates the block. We observe from
Fig. 5a that the mining time for A-Blocks is 0.97s, which
is less as compared to other schemes. This is because, we
utilize different blockchains for varying data which divides
the load of achieving consensus on various miners’ networks.
The mining time of PoW, PoS, and PBFT are 0.995s, 0.998s,
and 0.989s, respectively. We imply that the selection of an
appropriate consensus algorithm for a particular type of data
reduces the mining time by 7% when applied to Type 4 data.
We imply that the grouping of data results in the reduction
of mining time which further increases the scalability of the
system and supports the data with high sampling rate.
7) Response Time: We explore the response time of accessing
data from the blockchain using the A-Blocks method. From
Fig. 5b, we observe that the response time of accessing the data
from a single blockchain system is higher as compared to that
of A-Blocks. This is because A-Blocks groups the data into
various categories and stores it into the respective blockchain

(a) Mining time. (b) Response time.

Figure 5: Time for different consensus algorithms.

using the appropriate consensus algorithm. This increases
the effectiveness of the data management and its processing.
Since parsing a single large blockchain is time consuming,
A-Blocks facilitates data-centric dedicated blockchain. Such
a blockchain is shorter in length, which further reduces the
response time. We comment that with 30% reduction in
response time under the A-Blocks system, it enhances the
suitability of using blockchains in real-time scenarios.

In summary, compared to conventional blockchain practices,
A-Blocks significantly reduces the mining and response time,
which makes it suitable for real-time applications with negli-
gible CPU and memory overheads. From our observation, we
comment that it is best suitable for scenarios that satisfy the
following conditions:

• C1: Resource-constrained devices: From Section IV-B-
3 and IV-B-4, we observed that A-Blocks requires neg-
ligible CPU and memory overheads compared to con-
ventional blockchain deployments. This makes it suitable
for use in any legacy infrastructure, meaning that no
additional setup is necessary.

• C2: Optimal mining time: From Section IV-B-6, we
observed that A-Blocks significantly reduces the mining
time compared to the conventional blockchain deploy-
ments which makes it suitable for the applications pro-
ducing data with high sampling rate.

• C3: Real-time applications: From Section IV-B-7, we
observed that A-Blocks reduces the response time as
compared to the convention blockchain which makes it
suitable for the real-time applications.

In summary, A-Blocks is suitable for applications producing
data at a very high rate and utilizing variant types of sensors
that produce heterogeneous data.

V. CONCLUSION

In this paper, we proposed a dynamic consensus-based
blockchain (A-Blocks) to manage the data produced by the
sensors deployed in industries. A-Blocks consists of two
phases: 1) categorizing the data into groups based on their
traits and 2) selection of appropriate consensus method for
handling the same. In the first phase, we assorted data into
various categories using agglomerative clustering. We used
the value ranges, variability, and sampling rates of the data
to categorize them into groups. In the second phase, we im-
plemented a dynamic blockchain system using three consensus
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algorithms as proof of concept (PoW, PoS, and PBFT) to store
the data generated in phase 1. We selected one of the chains to
store data based on its traits and implemented the respective
consensus algorithm. Finally, we proposed an algorithm to
choose the consensus algorithm in the blockchain system. We
presented extensive experimental results to show the efficiency
of the proposed scheme. In this work, we abstained from
assimilating the pricing policies and managing heterogeneous
blockchains, which we plan to address in our extended work.
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